These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 16701864)

  • 21. Production and characterisation of novel phosphate glass fibre yarns, textiles, and textile composites for biomedical applications.
    Wang Y; Liu X; Zhu C; Parsons A; Liu J; Huang S; Ahmed I; Rudd C; Sharmin N
    J Mech Behav Biomed Mater; 2019 Nov; 99():47-55. PubMed ID: 31344522
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation and bioactive characteristics of a porous 13-93 glass, and fabrication into the articulating surface of a proximal tibia.
    Fu Q; Rahaman MN; Bal BS; Huang W; Day DE
    J Biomed Mater Res A; 2007 Jul; 82(1):222-9. PubMed ID: 17266021
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reactive fibre reinforced glass ionomer cements.
    Lohbauer U; Walker J; Nikolaenko S; Werner J; Clare A; Petschelt A; Greil P
    Biomaterials; 2003 Aug; 24(17):2901-7. PubMed ID: 12742729
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The development and testing of glaze materials for application to the fit surface of dental ceramic restorations.
    Cattell MJ; Chadwick TC; Knowles JC; Clarke RL
    Dent Mater; 2009 Apr; 25(4):431-41. PubMed ID: 19004493
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation and properties of porous microspheres made from borate glass.
    Conzone SD; Day DE
    J Biomed Mater Res A; 2009 Feb; 88(2):531-42. PubMed ID: 18306308
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of fibre and filler reinforcement of plastic brackets: an in vitro study.
    Faltermeier A; Rosentritt M; Faltermeier R; Müssig D
    Eur J Orthod; 2007 Jun; 29(3):304-9. PubMed ID: 17513873
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of woven glass fibre reinforcement on the flexural strength of composites.
    Oberholzer TG; du Preez IC; Lombard R; Pitout E
    SADJ; 2007 Oct; 62(9):386, 388-9. PubMed ID: 18260547
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cytocompatibility, mechanical and dissolution properties of high strength boron and iron oxide phosphate glass fibre reinforced bioresorbable composites.
    Sharmin N; Hasan MS; Parsons AJ; Rudd CD; Ahmed I
    J Mech Behav Biomed Mater; 2016 Jun; 59():41-56. PubMed ID: 26745720
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flexural strength, elastic modulus, and pH profile of self-etch resin luting cements.
    Saskalauskaite E; Tam LE; McComb D
    J Prosthodont; 2008 Jun; 17(4):262-8. PubMed ID: 18086139
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Radio-opaque bioactive glass markers for radiostereometric analysis.
    Madanat R; Moritz N; Vedel E; Svedström E; Aro HT
    Acta Biomater; 2009 Nov; 5(9):3497-505. PubMed ID: 19508904
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of custom adaptation and span-diameter ratio on the flexural properties of fiber-reinforced composite posts.
    Grande NM; Plotino G; Ioppolo P; Bedini R; Pameijer CH; Somma F
    J Dent; 2009 May; 37(5):383-9. PubMed ID: 19216018
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative assessment of time-related bioactive glass and calcium hydroxide effects on mechanical properties of human root dentin.
    Marending M; Stark WJ; Brunner TJ; Fischer J; Zehnder M
    Dent Traumatol; 2009 Feb; 25(1):126-9. PubMed ID: 19208025
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation and in vitro evaluation of bioactive glass (13-93) scaffolds with oriented microstructures for repair and regeneration of load-bearing bones.
    Fu Q; Rahaman MN; Bal BS; Brown RF
    J Biomed Mater Res A; 2010 Jun; 93(4):1380-90. PubMed ID: 19911380
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of surface acid etching on the biaxial flexural strength of two hot-pressed glass ceramics.
    Hooshmand T; Parvizi S; Keshvad A
    J Prosthodont; 2008 Jul; 17(5):415-9. PubMed ID: 18482364
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gravity spinning of polycaprolactone fibres for applications in tissue engineering.
    Williamson MR; Coombes AG
    Biomaterials; 2004 Feb; 25(3):459-65. PubMed ID: 14585694
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical behaviour of degradable phosphate glass fibres and composites-a review.
    Colquhoun R; Tanner KE
    Biomed Mater; 2015 Dec; 11(1):014105. PubMed ID: 26694533
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Discrete crosslinked fibrin microthread scaffolds for tissue regeneration.
    Cornwell KG; Pins GD
    J Biomed Mater Res A; 2007 Jul; 82(1):104-12. PubMed ID: 17269139
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of nano-clay reinforced phytagel-modified soy protein concentrate resin.
    Huang X; Netravali AN
    Biomacromolecules; 2006 Oct; 7(10):2783-9. PubMed ID: 17025353
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of biodegradable polyurethane microfibers for tissue engineering.
    Rockwood DN; Woodhouse KA; Fromstein JD; Chase DB; Rabolt JF
    J Biomater Sci Polym Ed; 2007; 18(6):743-58. PubMed ID: 17623555
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterisation of CorGlaes(®) Pure 107 fibres for biomedical applications.
    Colquhoun R; Gadegaard N; Healy DM; Tanner KE
    J Mater Sci Mater Med; 2016 Oct; 27(10):149. PubMed ID: 27582069
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.