These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 16701884)

  • 41. Chemically crosslinkable thermosensitive polyphosphazene gels as injectable materials for biomedical applications.
    Potta T; Chun C; Song SC
    Biomaterials; 2009 Oct; 30(31):6178-92. PubMed ID: 19709738
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of crosslinking density on swelling and mechanical properties of PEGDA400/PCLTMA900 hydrogels.
    Metz J; Gonnerman K; Chu A; Chu TM
    Biomed Sci Instrum; 2006; 42():389-94. PubMed ID: 16817639
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Adsorbed gels versus brushes: viscoelastic differences.
    Dutta AK; Belfort G
    Langmuir; 2007 Mar; 23(6):3088-94. PubMed ID: 17286418
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Preparation, characterization, and application of poly(vinyl alcohol)-graft-poly(ethylene glycol) resins: novel polymer matrices for solid-phase synthesis.
    Luo J; Pardin C; Zhu XX; Lubell WD
    J Comb Chem; 2007; 9(4):582-91. PubMed ID: 17590052
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rheological and mechanical properties of pharmaceutical gels. Part I: Non-medicated systems.
    Ferrari F; Rossi S; Bonferoni MC; Caramella C
    Boll Chim Farm; 2001; 140(5):329-36. PubMed ID: 11680087
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biodegradable poly(ethylene glycol)-peptide hydrogels with well-defined structure and properties for cell delivery.
    Liu SQ; Ee PL; Ke CY; Hedrick JL; Yang YY
    Biomaterials; 2009 Mar; 30(8):1453-61. PubMed ID: 19097642
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dendrimer crosslinked collagen as a corneal tissue engineering scaffold: mechanical properties and corneal epithelial cell interactions.
    Duan X; Sheardown H
    Biomaterials; 2006 Sep; 27(26):4608-17. PubMed ID: 16713624
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural and micromechanical characterization of type I collagen gels.
    Latinovic O; Hough LA; Daniel Ou-Yang H
    J Biomech; 2010 Feb; 43(3):500-5. PubMed ID: 19880123
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Alterations in physical cross-linking modulate mechanical properties of two-phase protein polymer networks.
    Wu X; Sallach R; Haller CA; Caves JA; Nagapudi K; Conticello VP; Levenston ME; Chaikof EL
    Biomacromolecules; 2005; 6(6):3037-44. PubMed ID: 16283724
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Viscoelastic characterizations of acellular dermal matrix (ADM) preparations for use as injectable implants.
    Ho HO; Tsai YT; Chen RN; Sheu MT
    J Biomed Mater Res A; 2004 Jul; 70(1):83-96. PubMed ID: 15174112
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enzymatically degradable temperature-sensitive polypeptide as a new in-situ gelling biomaterial.
    Jeong Y; Joo MK; Bahk KH; Choi YY; Kim HT; Kim WK; Lee HJ; Sohn YS; Jeong B
    J Control Release; 2009 Jul; 137(1):25-30. PubMed ID: 19306901
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synthesis and characterization of macroporous poly(ethylene glycol)-based hydrogels for tissue engineering application.
    Sannino A; Netti PA; Madaghiele M; Coccoli V; Luciani A; Maffezzoli A; Nicolais L
    J Biomed Mater Res A; 2006 Nov; 79(2):229-36. PubMed ID: 16752396
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ion gels by self-assembly of a triblock copolymer in an ionic liquid.
    He Y; Boswell PG; Bühlmann P; Lodge TP
    J Phys Chem B; 2007 May; 111(18):4645-52. PubMed ID: 17474692
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Influence on the physicochemical properties of fish collagen gels using self-assembly and simultaneous cross-linking with the N-hydroxysuccinimide adipic acid derivative.
    Shen L; Tian Z; Liu W; Li G
    Connect Tissue Res; 2015 Jun; 56(3):244-52. PubMed ID: 25689166
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biomolecular hydrogels formed and degraded via site-specific enzymatic reactions.
    Ehrbar M; Rizzi SC; Schoenmakers RG; Miguel BS; Hubbell JA; Weber FE; Lutolf MP
    Biomacromolecules; 2007 Oct; 8(10):3000-7. PubMed ID: 17883273
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vitro and in vivo demonstration of physically and chemically in situ gelling NIPAAm-based copolymer system.
    Lee BH; Beart HH; Cheng V; McLemore R; Robb SA; Cui Z; Dovigi A; Vernon BL
    J Biomater Sci Polym Ed; 2013; 24(13):1575-88. PubMed ID: 23848449
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Covalent adaptable networks: smart, reconfigurable and responsive network systems.
    Kloxin CJ; Bowman CN
    Chem Soc Rev; 2013 Sep; 42(17):7161-73. PubMed ID: 23579959
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Volume change of double cross-linked poly(aspartic acid) hydrogels induced by cleavage of one of the crosslinks.
    Zrinyi M; Gyenes T; Juriga D; Kim JH
    Acta Biomater; 2013 Feb; 9(2):5122-31. PubMed ID: 22975627
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dynamic viscoelastic properties of collagen gels with high mechanical strength.
    Mori H; Shimizu K; Hara M
    Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3230-6. PubMed ID: 23706205
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Using in situ rheology to characterize the microstructure in photopolymerized polyacrylamide gels for DNA electrophoresis.
    Wang J; Ugaz VM
    Electrophoresis; 2006 Sep; 27(17):3349-58. PubMed ID: 16892481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.