These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 16702024)
21. Development of probes for cellular functions using fluorescent proteins and fluorescence resonance energy transfer. Miyawaki A Annu Rev Biochem; 2011; 80():357-73. PubMed ID: 21529159 [TBL] [Abstract][Full Text] [Related]
22. Membrane phosphoinositides and protein-membrane interactions. Gokhale NA Amino Acids; 2013 Oct; 45(4):751-4. PubMed ID: 23824360 [TBL] [Abstract][Full Text] [Related]
23. Probing phosphoinositide functions in signaling and membrane trafficking. Downes CP; Gray A; Lucocq JM Trends Cell Biol; 2005 May; 15(5):259-68. PubMed ID: 15866030 [TBL] [Abstract][Full Text] [Related]
24. Phosphoinositides and signal transduction. Toker A Cell Mol Life Sci; 2002 May; 59(5):761-79. PubMed ID: 12088277 [TBL] [Abstract][Full Text] [Related]
25. Domain formation in phosphatidylinositol monophosphate/phosphatidylcholine mixed vesicles. Redfern DA; Gericke A Biophys J; 2004 May; 86(5):2980-92. PubMed ID: 15111413 [TBL] [Abstract][Full Text] [Related]
26. Devising powerful genetics, biochemical and structural tools in the functional analysis of phosphatidylinositol transfer proteins (PITPs) across diverse species. Davison JM; Bankaitis VA; Ghosh R Methods Cell Biol; 2012; 108():249-302. PubMed ID: 22325607 [TBL] [Abstract][Full Text] [Related]
27. Phosphoinositide-incorporated lipid-protein nanodiscs: A tool for studying protein-lipid interactions. Kobashigawa Y; Harada K; Yoshida N; Ogura K; Inagaki F Anal Biochem; 2011 Mar; 410(1):77-83. PubMed ID: 21094116 [TBL] [Abstract][Full Text] [Related]
28. Inositol lipid phosphatases in membrane trafficking and human disease. Billcliff PG; Lowe M Biochem J; 2014 Jul; 461(2):159-75. PubMed ID: 24966051 [TBL] [Abstract][Full Text] [Related]
29. Dynamic imaging of homo-FRET in live cells by fluorescence anisotropy microscopy. Ghosh S; Saha S; Goswami D; Bilgrami S; Mayor S Methods Enzymol; 2012; 505():291-327. PubMed ID: 22289460 [TBL] [Abstract][Full Text] [Related]
30. Transient Gene Expression as a Tool to Monitor and Manipulate the Levels of Acidic Phospholipids in Plant Cells. Noack LC; Pejchar P; Sekereš J; Jaillais Y; Potocký M Methods Mol Biol; 2019; 1992():189-199. PubMed ID: 31148039 [TBL] [Abstract][Full Text] [Related]
31. Imaging and manipulating phosphoinositides in living cells. Balla T J Physiol; 2007 Aug; 582(Pt 3):927-37. PubMed ID: 17395624 [TBL] [Abstract][Full Text] [Related]
32. Nuclear phosphoinositides and their roles in cell biology and disease. Martelli AM; Ognibene A; Buontempo F; Fini M; Bressanin D; Goto K; McCubrey JA; Cocco L; Evangelisti C Crit Rev Biochem Mol Biol; 2011 Oct; 46(5):436-57. PubMed ID: 21913876 [TBL] [Abstract][Full Text] [Related]
33. Phosphoinositide signaling: new tools and insights. Balla T; Szentpetery Z; Kim YJ Physiology (Bethesda); 2009 Aug; 24():231-44. PubMed ID: 19675354 [TBL] [Abstract][Full Text] [Related]
34. Membrane-protein interactions in cell signaling and membrane trafficking. Cho W; Stahelin RV Annu Rev Biophys Biomol Struct; 2005; 34():119-51. PubMed ID: 15869386 [TBL] [Abstract][Full Text] [Related]
35. Inositol phospholipid metabolism in the kidney. Troyer DA; Schwertz DW; Kreisberg JI; Venkatachalam MA Annu Rev Physiol; 1986; 48():51-71. PubMed ID: 3010824 [TBL] [Abstract][Full Text] [Related]
36. Fluorescence correlation methods for imaging cellular behavior of sphingolipid-interacting probes. Kraut R; Bag N; Wohland T Methods Cell Biol; 2012; 108():395-427. PubMed ID: 22325612 [TBL] [Abstract][Full Text] [Related]