BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 16702219)

  • 1. Liposomes comprising anionic but not neutral phospholipids cause dissociation of Rac(1 or 2) x RhoGDI complexes and support amphiphile-independent NADPH oxidase activation by such complexes.
    Ugolev Y; Molshanski-Mor S; Weinbaum C; Pick E
    J Biol Chem; 2006 Jul; 281(28):19204-19. PubMed ID: 16702219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissociation of Rac1(GDP).RhoGDI complexes by the cooperative action of anionic liposomes containing phosphatidylinositol 3,4,5-trisphosphate, Rac guanine nucleotide exchange factor, and GTP.
    Ugolev Y; Berdichevsky Y; Weinbaum C; Pick E
    J Biol Chem; 2008 Aug; 283(32):22257-71. PubMed ID: 18505730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting of Rac1 to the phagocyte membrane is sufficient for the induction of NADPH oxidase assembly.
    Gorzalczany Y; Sigal N; Itan M; Lotan O; Pick E
    J Biol Chem; 2000 Dec; 275(51):40073-81. PubMed ID: 11007780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The guanine nucleotide exchange factor trio activates the phagocyte NADPH oxidase in the absence of GDP to GTP exchange on Rac. "The emperor's nw clothes".
    Sigal N; Gorzalczany Y; Sarfstein R; Weinbaum C; Zheng Y; Pick E
    J Biol Chem; 2003 Feb; 278(7):4854-61. PubMed ID: 12475976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the Rho GTPase Rac in the activation of the phagocyte NADPH oxidase: outsourcing a key task.
    Pick E
    Small GTPases; 2014; 5():e27952. PubMed ID: 24598074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tripartite chimeras comprising functional domains derived from the cytosolic NADPH oxidase components p47phox, p67phox, and Rac1 elicit activator-independent superoxide production by phagocyte membranes: an essential role for anionic membrane phospholipids.
    Berdichevsky Y; Mizrahi A; Ugolev Y; Molshanski-Mor S; Pick E
    J Biol Chem; 2007 Jul; 282(30):22122-39. PubMed ID: 17548354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A prenylated p67phox-Rac1 chimera elicits NADPH-dependent superoxide production by phagocyte membranes in the absence of an activator and of p47phox: conversion of a pagan NADPH oxidase to monotheism.
    Gorzalczany Y; Alloul N; Sigal N; Weinbaum C; Pick E
    J Biol Chem; 2002 May; 277(21):18605-10. PubMed ID: 11896062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of the Rac1-RhoGDI complex involved in nadph oxidase activation.
    Grizot S; Fauré J; Fieschi F; Vignais PV; Dagher MC; Pebay-Peyroula E
    Biochemistry; 2001 Aug; 40(34):10007-13. PubMed ID: 11513578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A prenylated p47phox-p67phox-Rac1 chimera is a Quintessential NADPH oxidase activator: membrane association and functional capacity.
    Mizrahi A; Berdichevsky Y; Casey PJ; Pick E
    J Biol Chem; 2010 Aug; 285(33):25485-99. PubMed ID: 20529851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cytosolic component p47(phox) is not a sine qua non participant in the activation of NADPH oxidase but is required for optimal superoxide production.
    Koshkin V; Lotan O; Pick E
    J Biol Chem; 1996 Nov; 271(48):30326-9. PubMed ID: 8939991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the rac1 p21-GDP-dissociation inhibitor for rho heterodimer in the activation of the superoxide-forming NADPH oxidase of macrophages.
    Pick E; Gorzalczany Y; Engel S
    Eur J Biochem; 1993 Oct; 217(1):441-55. PubMed ID: 8223583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of the superoxide-generating NADPH oxidase by chimeric proteins consisting of segments of the cytosolic component p67(phox) and the small GTPase Rac1.
    Alloul N; Gorzalczany Y; Itan M; Sigal N; Pick E
    Biochemistry; 2001 Dec; 40(48):14557-66. PubMed ID: 11724569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping of functional domains in the p22(phox) subunit of flavocytochrome b(559) participating in the assembly of the NADPH oxidase complex by "peptide walking".
    Dahan I; Issaeva I; Gorzalczany Y; Sigal N; Hirshberg M; Pick E
    J Biol Chem; 2002 Mar; 277(10):8421-32. PubMed ID: 11733522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Translocation of Rac correlates with NADPH oxidase activation. Evidence for equimolar translocation of oxidase components.
    Quinn MT; Evans T; Loetterle LR; Jesaitis AJ; Bokoch GM
    J Biol Chem; 1993 Oct; 268(28):20983-7. PubMed ID: 8407934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of NADPH oxidase activation by the Rac/Rho-GDI complex.
    Di-Poï N; Fauré J; Grizot S; Molnár G; Pick E; Dagher MC
    Biochemistry; 2001 Aug; 40(34):10014-22. PubMed ID: 11513579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two pathways of activation of the superoxide-generating NADPH oxidase of phagocytes in vitro--distinctive effects of inhibitors.
    Sigal N; Gorzalczany Y; Pick E
    Inflammation; 2003 Jun; 27(3):147-59. PubMed ID: 12875368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of the phagocyte NADPH oxidase by Rac Guanine nucleotide exchange factors in conjunction with ATP and nucleoside diphosphate kinase.
    Mizrahi A; Molshanski-Mor S; Weinbaum C; Zheng Y; Hirshberg M; Pick E
    J Biol Chem; 2005 Feb; 280(5):3802-11. PubMed ID: 15557278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Post-translational processing of rac p21s is important both for their interaction with the GDP/GTP exchange proteins and for their activation of NADPH oxidase.
    Ando S; Kaibuchi K; Sasaki T; Hiraoka K; Nishiyama T; Mizuno T; Asada M; Nunoi H; Matsuda I; Matsuura Y
    J Biol Chem; 1992 Dec; 267(36):25709-13. PubMed ID: 1464587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of NADPH oxidase activation by 4-(2-aminoethyl)-benzenesulfonyl fluoride and related compounds.
    Diatchuk V; Lotan O; Koshkin V; Wikstroem P; Pick E
    J Biol Chem; 1997 May; 272(20):13292-301. PubMed ID: 9148950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arachidonic acid induces direct interaction of the p67(phox)-Rac complex with the phagocyte oxidase Nox2, leading to superoxide production.
    Matono R; Miyano K; Kiyohara T; Sumimoto H
    J Biol Chem; 2014 Sep; 289(36):24874-84. PubMed ID: 25056956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.