BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 16702255)

  • 21. Lipid droplets coated with milk fat globule membrane fragments: Microstructure and functional properties as a function of pH.
    Lopez C; Cauty C; Rousseau F; Blot M; Margolis A; Famelart MH
    Food Res Int; 2017 Jan; 91():26-37. PubMed ID: 28290324
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Steady shear rheological properties of micellar casein concentrates obtained by membrane filtration as a function of shear rate, concentration, and temperature.
    Sauer A; Doehner I; Moraru CI
    J Dairy Sci; 2012 Oct; 95(10):5569-79. PubMed ID: 22901476
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation and applications of milk fat globule membrane material: isolation from buttermilk and butter serum.
    Le TT; Miocinovic J; Van Camp J; Devreese B; Strijs K; Vande WT; Dewettinck K
    Commun Agric Appl Biol Sci; 2011; 76(1):111-4. PubMed ID: 21539210
    [No Abstract]   [Full Text] [Related]  

  • 24. Effect of washing conditions on the recovery of milk fat globule membrane proteins during the isolation of milk fat globule membrane from milk.
    Le TT; Van Camp J; Rombaut R; van Leeckwyck F; Dewettinck K
    J Dairy Sci; 2009 Aug; 92(8):3592-603. PubMed ID: 19620640
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of emulsifying component composition on creams formulated with fractionated milkfat.
    Scott LL; Duncan SE; Sumner SS; Waterman KM; Kaylegian KE
    J Agric Food Chem; 2003 Sep; 51(20):5933-40. PubMed ID: 13129297
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-pressure-induced interactions between milk fat globule membrane proteins and skim milk proteins in whole milk.
    Ye A; Anema SG; Singh H
    J Dairy Sci; 2004 Dec; 87(12):4013-22. PubMed ID: 15545361
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The surface properties of milk fat globules govern their interactions with the caseins: Role of homogenization and pH probed by AFM force spectroscopy.
    Obeid S; Guyomarc'h F; Francius G; Guillemin H; Wu X; Pezennec S; Famelart MH; Cauty C; Gaucheron F; Lopez C
    Colloids Surf B Biointerfaces; 2019 Oct; 182():110363. PubMed ID: 31344611
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Composition, thermotropic properties, and oxidative stability of freeze-dried and spray-dried milk fat globule membrane isolated from cheese whey.
    Zhu D; Damodaran S
    J Agric Food Chem; 2011 Aug; 59(16):8931-8. PubMed ID: 21766876
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of temperature and pore size on the fractionation of fresh and reconstituted buttermilk by microfiltration.
    Morin P; Jiménez-Flores R; Pouliot Y
    J Dairy Sci; 2004 Feb; 87(2):267-73. PubMed ID: 14762069
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of emulsifying properties of milk fat globule membrane materials isolated from different dairy by-products.
    Phan TT; Le TT; Van der Meeren P; Dewettinck K
    J Dairy Sci; 2014; 97(8):4799-810. PubMed ID: 24913653
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of kappa-casein in the association of denatured whey proteins with casein micelles in heated reconstituted skim milk.
    Anema SG
    J Agric Food Chem; 2007 May; 55(9):3635-42. PubMed ID: 17417865
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of fat globule size on the churnability of dairy cream.
    Panchal BR; Truong T; Prakash S; Bansal N; Bhandari B;
    Food Res Int; 2017 Sep; 99(Pt 1):229-238. PubMed ID: 28784479
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The liquid-state 31P-nuclear magnetic resonance study on microfiltrated milk.
    Ishii T; Hiramatsu K; Ohba T; Tsutsumi A
    J Dairy Sci; 2001 Nov; 84(11):2357-63. PubMed ID: 11768075
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of soluble calcium and lactose on limiting flux and serum protein removal during skim milk microfiltration.
    Adams MC; Hurt EE; Barbano DM
    J Dairy Sci; 2015 Nov; 98(11):7483-97. PubMed ID: 26298759
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficiency of serum protein removal from skim milk with ceramic and polymeric membranes at 50 degrees C.
    Zulewska J; Newbold M; Barbano DM
    J Dairy Sci; 2009 Apr; 92(4):1361-77. PubMed ID: 19307617
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of membrane length, membrane resistance, and filtration conditions on the fractionation of milk proteins by microfiltration.
    Piry A; Heino A; Kühnl W; Grein T; Ripperger S; Kulozik U
    J Dairy Sci; 2012 Apr; 95(4):1590-602. PubMed ID: 22459807
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Casein micelles and their internal structure.
    de Kruif CG; Huppertz T; Urban VS; Petukhov AV
    Adv Colloid Interface Sci; 2012; 171-172():36-52. PubMed ID: 22381008
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kappa-casein and beta-caseins in human milk micelles: structural studies.
    Dev BC; Sood SM; DeWind S; Slattery CW
    Arch Biochem Biophys; 1994 Nov; 314(2):329-36. PubMed ID: 7979373
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanism for the ethanol-dependent heat-induced dissociation of casein micelles.
    O'Connell JE; Kelly AL; Fox PF; de Kruif KG
    J Agric Food Chem; 2001 Sep; 49(9):4424-8. PubMed ID: 11559149
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Effect of Milk Constituents and Crowding Agents on Amyloid Fibril Formation by κ-Casein.
    Liu J; Dehle FC; Liu Y; Bahraminejad E; Ecroyd H; Thorn DC; Carver JA
    J Agric Food Chem; 2016 Feb; 64(6):1335-43. PubMed ID: 26807595
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.