BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 16702337)

  • 41. Low-fat diets do not lower plasma cholesterol levels in healthy men compared to high-fat diets with similar fatty acid composition at constant caloric intake.
    Nelson GJ; Schmidt PC; Kelley DS
    Lipids; 1995 Nov; 30(11):969-76. PubMed ID: 8569436
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Replacing dietary palmitic acid with elaidic acid (t-C18:1 delta9) depresses HDL and increases CETP activity in cebus monkeys.
    Khosla P; Hajri T; Pronczuk A; Hayes KC
    J Nutr; 1997 Mar; 127(3):531S-536S. PubMed ID: 9082041
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of regulatory peptides on the stress-induced changes of lipid metabolism in experimental animals.
    Solin AV; Korozin VI; Lyashev YD
    Bull Exp Biol Med; 2013 Jul; 155(3):324-6. PubMed ID: 24137594
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of fluvastatin on intermediate density lipoprotein (remnants) and other lipoprotein levels in hypercholesterolemia.
    Broyles FE; Walden CE; Hunninghake DB; Hill-Williams D; Knopp RH
    Am J Cardiol; 1995 Jul; 76(2):129A-135A. PubMed ID: 7604788
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Impact of grape pomace consumption on the blood lipid profile and liver genes associated with lipid metabolism of young rats.
    Yu J; Bansode RR; Smith IN; Hurley SL
    Food Funct; 2017 Aug; 8(8):2731-2738. PubMed ID: 28725902
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A comprehensive metabolic profiling of the metabolically healthy obesity phenotype.
    Telle-Hansen VH; Christensen JJ; Formo GA; Holven KB; Ulven SM
    Lipids Health Dis; 2020 May; 19(1):90. PubMed ID: 32386512
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The evolution of plasma cholesterol: direct utility or a "spandrel" of hepatic lipid metabolism?
    Babin PJ; Gibbons GF
    Prog Lipid Res; 2009 Mar; 48(2):73-91. PubMed ID: 19049814
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of various phospholipids on plasma lipoproteins and liver lipids in hypercholesterolemic rats.
    Iwata T; Kimura Y; Tsutsumi K; Furukawa Y; Kimura S
    J Nutr Sci Vitaminol (Tokyo); 1993 Feb; 39(1):63-71. PubMed ID: 8509902
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Plasma lipoproteins and regulation of hepatic metabolism of fatty acids in altered thyroid states.
    Heimberg M; Olubadewo JO; Wilcox HG
    Endocr Rev; 1985; 6(4):590-607. PubMed ID: 3908084
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lipid effects of peroxisome proliferator-activated receptor-δ agonist GW501516 in subjects with low high-density lipoprotein cholesterol: characteristics of metabolic syndrome.
    Olson EJ; Pearce GL; Jones NP; Sprecher DL
    Arterioscler Thromb Vasc Biol; 2012 Sep; 32(9):2289-94. PubMed ID: 22814748
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pathophysiology of Diabetic Dyslipidemia.
    Hirano T
    J Atheroscler Thromb; 2018 Sep; 25(9):771-782. PubMed ID: 29998913
    [TBL] [Abstract][Full Text] [Related]  

  • 52. LDL, HDL, VLDL, and CVD Prevention: Lessons from Genetics?
    Hewing B; Landmesser U
    Curr Cardiol Rep; 2015 Jul; 17(7):610. PubMed ID: 26031673
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High dietary cholesterol and ovariectomy in rats repress gene expression of key markers of VLDL and bile acid metabolism in liver.
    Farahnak Z; Côté I; Ngo Sock ET; Lavoie JM
    Lipids Health Dis; 2015 Oct; 14():125. PubMed ID: 26453540
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of dietary phenolic compounds on tocopherol, cholesterol, and fatty acids in rats.
    Kamal-Eldin A; Frank J; Razdan A; Tengblad S; Basu S; Vessby B
    Lipids; 2000 Apr; 35(4):427-35. PubMed ID: 10858028
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Methionine deficiency in rats fed soy protein induces hypercholesterolemia and potentiates lipoprotein susceptibility to peroxidation.
    Moundras C; Rémésy C; Levrat MA; Demigné C
    Metabolism; 1995 Sep; 44(9):1146-52. PubMed ID: 7666787
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The effect of dietary protein and sulfur amino acids on hepatic glutathione concentration and glutathione-dependent enzyme activities in the rat.
    Bauman PF; Smith TK; Bray TM
    Can J Physiol Pharmacol; 1988 Aug; 66(8):1048-52. PubMed ID: 3179838
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Anacetrapib reduces (V)LDL cholesterol by inhibition of CETP activity and reduction of plasma PCSK9.
    van der Tuin SJ; Kühnast S; Berbée JF; Verschuren L; Pieterman EJ; Havekes LM; van der Hoorn JW; Rensen PC; Jukema JW; Princen HM; Willems van Dijk K; Wang Y
    J Lipid Res; 2015 Nov; 56(11):2085-93. PubMed ID: 26342106
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chitosan oligosaccharide decreases very-low-density lipoprotein triglyceride and increases high-density lipoprotein cholesterol in high-fat-diet-fed rats.
    Wang D; Han J; Yu Y; Li X; Wang Y; Tian H; Guo S; Jin S; Luo T; Qin S
    Exp Biol Med (Maywood); 2011 Sep; 236(9):1064-9. PubMed ID: 21856756
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The g0/g1 switch gene 2 is an important regulator of hepatic triglyceride metabolism.
    Wang Y; Zhang Y; Qian H; Lu J; Zhang Z; Min X; Lang M; Yang H; Wang N; Zhang P
    PLoS One; 2013; 8(8):e72315. PubMed ID: 23951308
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of 3-thiadicarboxylic acid on lipid metabolism in experimental nephrosis.
    al-Shurbaji A; Skorve J; Berge RK; Rudling M; Björkhem I; Berglund L
    Arterioscler Thromb; 1993 Nov; 13(11):1580-6. PubMed ID: 8218098
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.