These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 16702769)

  • 21. Persistence of auditory modulation of wind-induced escape behavior in crickets.
    Lu A; Fukutomi M; Shidara H; Ogawa H
    Front Physiol; 2023; 14():1153913. PubMed ID: 37250114
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A neuromorphic hair sensor model of wind-mediated escape in the cricket.
    Chapman T; Webb B
    Int J Neural Syst; 1999 Oct; 9(5):397-403. PubMed ID: 10630468
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of behavioral selection after sensory deprivation of legs in the cricket Gryllus bimaculatus.
    Kanou M; Morita S; Matsuura T; Yamaguchi T
    Zoolog Sci; 2007 Oct; 24(10):945-52. PubMed ID: 18088170
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ca2+ imaging of cricket protocerebrum responses to air current stimulation.
    Ogawa H; Kajita Y
    Neurosci Lett; 2015 Jan; 584():282-6. PubMed ID: 25450140
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Postembryonic changes in the response properties of wind-sensitive giant interneurons in cricket.
    Matsuura T; Kanou M
    J Insect Physiol; 2003 Sep; 49(9):805-15. PubMed ID: 16256682
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The function of the cercal sensory system in escape behavior of the cave cricket Troglophilus neglectus Krauss.
    Schrader Š
    Pflugers Arch; 2000 Jan; 439(Suppl 1):r187-r189. PubMed ID: 28176118
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crickets alter wind-elicited escape strategies depending on acoustic context.
    Fukutomi M; Ogawa H
    Sci Rep; 2017 Nov; 7(1):15158. PubMed ID: 29123249
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Directional sensitivity of wind-sensitive giant interneurons in the cave cricket Troglophilus neglectus.
    Schrader S; Horseman G; Cokl A
    J Exp Zool; 2002 Jan; 292(1):73-81. PubMed ID: 11754023
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of serotonergic and opioidergic drugs on escape behaviors and social status of male crickets.
    Dyakonova VE; Schürmann F; Sakharov DA
    Naturwissenschaften; 1999 Sep; 86(9):435-7. PubMed ID: 10501691
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of cercal air currents on singing motor pattern generation in the cricket (Gryllus bimaculatus DeGeer).
    Jacob PF; Hedwig B
    J Neurophysiol; 2015 Nov; 114(5):2649-60. PubMed ID: 26334014
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hair canopy of cricket sensory system tuned to predator signals.
    Magal C; Dangles O; Caparroy P; Casas J
    J Theor Biol; 2006 Aug; 241(3):459-66. PubMed ID: 16427653
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatial perception mediated by insect antennal mechanosensory system.
    Ifere NO; Shidara H; Sato N; Ogawa H
    J Exp Biol; 2022 Feb; 225(4):. PubMed ID: 35072207
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ontogeny of air-motion sensing in cricket.
    Dangles O; Pierre D; Magal C; Vannier F; Casas J
    J Exp Biol; 2006 Nov; 209(Pt 21):4363-70. PubMed ID: 17050851
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Central projections of cercal giant interneurons in the adult field cricket, Gryllus bimaculatus.
    Yamao H; Shidara H; Ogawa H
    J Comp Neurol; 2022 Sep; 530(13):2372-2384. PubMed ID: 35531898
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Roles of neural communication between the brain and thoracic ganglia in the selection and regulation of the cricket escape behavior.
    Sato N; Shidara H; Kamo S; Ogawa H
    J Insect Physiol; 2022; 139():104381. PubMed ID: 35305989
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The wind-evoked escape behavior of the cricket Gryllus bimaculatus: integration of behavioral elements.
    Tauber E; Camhi J
    J Exp Biol; 1995; 198(Pt 9):1895-907. PubMed ID: 9319804
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dendritic calcium accumulation regulates wind sensitivity via short-term depression at cercal sensory-to-giant interneuron synapses in the cricket.
    Ogawa H; Baba Y; Oka K
    J Neurobiol; 2001 Mar; 46(4):301-13. PubMed ID: 11180157
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trade-off between motor performance and behavioural flexibility in the action selection of cricket escape behaviour.
    Sato N; Shidara H; Ogawa H
    Sci Rep; 2019 Dec; 9(1):18112. PubMed ID: 31792301
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanoreceptors involved in the hindwing-evoked escape behaviour in cricket, Gryllus bimaculatus.
    Hiraguchi T; Yamaguchi T; Takahata M
    J Exp Biol; 2003 Feb; 206(Pt 3):523-34. PubMed ID: 12502773
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Response of cricket and spider motion-sensing hairs to airflow pulsations.
    Kant R; Humphrey JA
    J R Soc Interface; 2009 Nov; 6(40):1047-64. PubMed ID: 19324674
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.