These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 16702770)

  • 21. Dendritic Ca2+ response in cercal sensory interneurons of the cricket Gryllus bimaculatus.
    Ogawa H; Baba Y; Oka K
    Neurosci Lett; 1996 Nov; 219(1):21-4. PubMed ID: 8961294
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Presynaptic inhibition of identified wind-sensitive afferents in the cercal system of the locust.
    Boyan GS
    J Neurosci; 1988 Aug; 8(8):2748-57. PubMed ID: 3411352
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of self-generated wind on compensational recovery of escape direction in unilaterally cercus-ablated crickets, Gryllus bimaculatus.
    Takuwa H; Ota S; Kanou M
    Zoolog Sci; 2008 Mar; 25(3):235-41. PubMed ID: 18393559
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Representation of sensory information in the cricket cercal sensory system. I. Response properties of the primary interneurons.
    Miller JP; Jacobs GA; Theunissen FE
    J Neurophysiol; 1991 Nov; 66(5):1680-9. PubMed ID: 1765801
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sensitive Period for the Recovery of the Response Rate of the Wind-Evoked Escape Behavior of Unilaterally Cercus-Ablated Crickets (Gryllus bimaculatus).
    Takuwa H; Kanou M
    Zoolog Sci; 2015 Apr; 32(2):119-23. PubMed ID: 25826058
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ca2+ imaging of cricket protocerebrum responses to air current stimulation.
    Ogawa H; Kajita Y
    Neurosci Lett; 2015 Jan; 584():282-6. PubMed ID: 25450140
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Representation of sensory information in the cricket cercal sensory system. II. Information theoretic calculation of system accuracy and optimal tuning-curve widths of four primary interneurons.
    Theunissen FE; Miller JP
    J Neurophysiol; 1991 Nov; 66(5):1690-703. PubMed ID: 1765802
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Auditory modulation of wind-elicited walking behavior in the cricket Gryllus bimaculatus.
    Fukutomi M; Someya M; Ogawa H
    J Exp Biol; 2015 Dec; 218(Pt 24):3968-77. PubMed ID: 26519512
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of Visual Information on Wind-Evoked Escape Behavior of the Cricket, Gryllus bimaculatus.
    Kanou M; Matsuyama A; Takuwa H
    Zoolog Sci; 2014 Sep; 31(9):559-64. PubMed ID: 25186926
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of cercal air currents on singing motor pattern generation in the cricket (Gryllus bimaculatus DeGeer).
    Jacob PF; Hedwig B
    J Neurophysiol; 2015 Nov; 114(5):2649-60. PubMed ID: 26334014
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relative contributions of organ shape and receptor arrangement to the design of cricket's cercal system.
    Dangles O; Steinmann T; Pierre D; Vannier F; Casas J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Jul; 194(7):653-63. PubMed ID: 18553087
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anatomy and physiology of identified wind-sensitive local interneurons in the cricket cercal sensory system.
    Bodnar DA; Miller JP; Jacobs GA
    J Comp Physiol A; 1991 May; 168(5):553-64. PubMed ID: 1920156
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A neuromorphic hair sensor model of wind-mediated escape in the cricket.
    Chapman T; Webb B
    Int J Neural Syst; 1999 Oct; 9(5):397-403. PubMed ID: 10630468
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Morphology of the giant interneurons and cercal nerve projections of the American cockroach.
    Daley DL; Vardi N; Appignani B; Camhi JM
    J Comp Neurol; 1981 Feb; 196(1):41-52. PubMed ID: 7204666
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Information theoretic analysis of dynamical encoding by four identified primary sensory interneurons in the cricket cercal system.
    Theunissen F; Roddey JC; Stufflebeam S; Clague H; Miller JP
    J Neurophysiol; 1996 Apr; 75(4):1345-64. PubMed ID: 8727382
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neural mapping of direction and frequency in the cricket cercal sensory system.
    Paydar S; Doan CA; Jacobs GA
    J Neurosci; 1999 Mar; 19(5):1771-81. PubMed ID: 10024362
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction between arthropod filiform hairs in a fluid environment.
    Cummins B; Gedeon T; Klapper I; Cortez R
    J Theor Biol; 2007 Jul; 247(2):266-80. PubMed ID: 17434184
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dendritic calcium accumulation regulates wind sensitivity via short-term depression at cercal sensory-to-giant interneuron synapses in the cricket.
    Ogawa H; Baba Y; Oka K
    J Neurobiol; 2001 Mar; 46(4):301-13. PubMed ID: 11180157
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Excitatory influence of wind-sensitive local interneurons on an ascending interneuron in the cricket cercal sensory system.
    Bodnar DA
    J Comp Physiol A; 1993 May; 172(5):641-51. PubMed ID: 8331608
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Encoding of small-scale air motion dynamics in the cricket,
    Mulder-Rosi J; Miller JP
    J Neurophysiol; 2022 Apr; 127(4):1185-1197. PubMed ID: 35353628
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.