BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 167037)

  • 1. Somatic genetic analysis of cyclic AMP action: characterization of unresponsive mutants.
    Bourne HR; Coffino P; Tomkins GM
    J Cell Physiol; 1975 Jun; 85(3):611-20. PubMed ID: 167037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Somatic genetic analysis of cyclic AMP action: selection of unresponsive mutants.
    Coffino P; Bourne HR; Tomkins GM
    J Cell Physiol; 1975 Jun; 85(3):603-10. PubMed ID: 167036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A variant of S49 mouse lymphoma cells with enhanced secretion of cyclic AMP.
    Steinberg RA; Steinberg MG; van Daalen Wetters T
    J Cell Physiol; 1979 Sep; 100(3):579-88. PubMed ID: 226556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclic AMP-dependent protein kinase: pivotal role in regulation of enzyme induction and growth.
    Insel PA; Bourne HR; Coffino P; Tomkins GM
    Science; 1975 Nov; 190(4217):896-8. PubMed ID: 171770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of lymphoma cell death induced by cyclic AMP.
    Coffino P; Bourne HR; Tomkins GM
    Am J Pathol; 1975 Oct; 81(1):199-204. PubMed ID: 170834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. B16 mouse melanoma cells selected for resistance to cyclic AMP-mediated growth inhibition are cross-resistant to retinoic acid-induced growth inhibition.
    Niles RM; Loewy B
    J Cell Physiol; 1991 Apr; 147(1):176-81. PubMed ID: 1645360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of ornithine decarboxylase and S-adenosylmethionine decarboxylase activities of S49 lymphoma cells by agents increasing cyclic AMP.
    Honeysett JM; Insel PA
    J Cyclic Nucleotide Res; 1981; 7(5):321-32. PubMed ID: 6284819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple mechanisms of growth inhibition by cyclic AMP derivatives in rat GH1 pituitary cells: isolation of an adenylate cyclase-deficient variant.
    Martin TF; Ronning SA
    J Cell Physiol; 1981 Nov; 109(2):289-97. PubMed ID: 6271795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanisms of cyclic AMP action: a genetic approach.
    Coffino P; Bourne HR; Friedrich U; Hochman J; Insel PA; Lemaire I; Melmon KL; Tomkins GM
    Recent Prog Horm Res; 1976; 32():669-84. PubMed ID: 183250
    [No Abstract]   [Full Text] [Related]  

  • 10. Dibutyryl cyclic AMP resistant MDCK cells in serum free medium have reduced cyclic AMP dependent protein kinase activity and a diminished effect of PGE1 on differentiated function.
    Devis PE; Grohol SH; Taub M
    J Cell Physiol; 1985 Oct; 125(1):23-35. PubMed ID: 2995425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Desensitization of catecholamine-stimulated adenylate cyclase and down-regulation of beta-adrenergic receptors in rat glioma C6 cells. Role of cyclic AMP and protein synthesis.
    Zaremba TG; Fishman PH
    Mol Pharmacol; 1984 Sep; 26(2):206-13. PubMed ID: 6207420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of hepatoma cell growth by analogs of adenosine and cyclic AMP and the influence of enzymes in mammalian sera.
    Hargrove JL; Granner DK
    J Cell Physiol; 1982 Jun; 111(3):232-8. PubMed ID: 6124549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of S49 lymphoma cell growth by cyclic adenosine 3':5'-monophosphate.
    Coffino P; Gray JW
    Cancer Res; 1978 Nov; 38(11 Pt 2):4285-8. PubMed ID: 212191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss of the PGE1 requirement for MDCK cell growth associated with a defect in cyclic AMP phosphodiesterase.
    Taub M; Saier MH; Chuman L; Hiller S
    J Cell Physiol; 1983 Feb; 114(2):153-61. PubMed ID: 6185509
    [No Abstract]   [Full Text] [Related]  

  • 15. beta Adrenergic receptor-mediated regulation of cyclic nucleotide phosphodiesterase in C6 glioma cells: vinblastine blockade of isoproterenol induction.
    Schwartz JP; Costa E
    J Pharmacol Exp Ther; 1980 Mar; 212(3):569-72. PubMed ID: 6244389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new principle for resistance to cholera: desensitization to cyclic AMP-mediated diarrhea induced by cholera toxin in the mouse intestine.
    Lönnroth I; Lange S
    J Cyclic Nucleotide Res; 1981; 7(4):247-57. PubMed ID: 6278008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of differentiation of the human histiocytic lymphoma cell line U-937 by retinoic acid and cyclic adenosine 3':5'-monophosphate-inducing agents.
    Olsson IL; Breitman TR
    Cancer Res; 1982 Oct; 42(10):3924-7. PubMed ID: 6286100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coexpression of mutant and wild type protein kinase in lymphoma cells resistant to dibutyryl cyclic AMP.
    Lemaire I; Coffino P
    J Cell Physiol; 1977 Sep; 92(3):437-45. PubMed ID: 198416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of phosphodiesterase and ornithine decarboxylase by cAMP is cell cycle independent.
    Kaiser N; Bourne HR; Insel PA; Coffino P
    J Cell Physiol; 1979 Dec; 101(3):369-74. PubMed ID: 231036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PGE1-independent MDCK cells have elevated intracellular cyclic AMP but retain the growth stimulatory effects of glucagon and epidermal growth factor in serum-free medium.
    Taub M; Devis PE; Grohol SH
    J Cell Physiol; 1984 Jul; 120(1):19-28. PubMed ID: 6203919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.