These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 16704116)

  • 21. A new experimental approach to the search for chemical density factors in the regulation of monoculture growth.
    Degermendzhy AG; Adamovich VV; Adamovich VA
    J Gen Microbiol; 1993 Sep; 139(9):2027-31. PubMed ID: 8245829
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bacterial microcolony--a possible approach for a rapid differentiation of bacteria.
    Hadzieva NC; Hadziev ST
    J Hyg Epidemiol Microbiol Immunol; 1987; 31(2):189-95. PubMed ID: 3302035
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A quasi-chemical model for the growth and death of microorganisms in foods by non-thermal and high-pressure processing.
    Doona CJ; Feeherry FE; Ross EW
    Int J Food Microbiol; 2005 Apr; 100(1-3):21-32. PubMed ID: 15854689
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bacterial actin and tubulin homologs in cell growth and division.
    Busiek KK; Margolin W
    Curr Biol; 2015 Mar; 25(6):R243-R254. PubMed ID: 25784047
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of automated analysis to the study of bacterial growth. II. Continuous analysis of microbial nucleic acids and proteins during normal and antibiotic-inhibited growth.
    Gerke JR
    Ann N Y Acad Sci; 1965 Nov; 130(2):722-32. PubMed ID: 5324767
    [No Abstract]   [Full Text] [Related]  

  • 26. An Escherichia coli mutant that makes exceptionally long cells.
    El-Hajj ZW; Newman EB
    J Bacteriol; 2015 Apr; 197(8):1507-14. PubMed ID: 25691528
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A deterministic model for monophasic growth of batch cultures of bacteria.
    Jason AC
    Antonie Van Leeuwenhoek; 1983 Dec; 49(6):513-36. PubMed ID: 6370130
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calculation of fermentation parameters from the results of a batch test taking account of the volume of biomass in the fermenting medium.
    Borzani W
    Biotechnol Lett; 2003 Nov; 25(22):1953-6. PubMed ID: 14719833
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An easy-to-use simulation program demonstrates variations in bacterial cell cycle parameters depending on medium and temperature.
    Stokke C; Flåtten I; Skarstad K
    PLoS One; 2012; 7(2):e30981. PubMed ID: 22348034
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mathematical modeling of bacterial cell cycle: the problem of coordinating genome replication with cell growth.
    Likhoshvai VA; Khlebodarova TM
    J Bioinform Comput Biol; 2014 Jun; 12(3):1450009. PubMed ID: 24969747
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Division of Escherichia coli 15 TAU cells synchronized by arginine and uracil starvation.
    Hirsch I; Vondrejs V
    Folia Microbiol (Praha); 1971; 16(2):137-41. PubMed ID: 4928740
    [No Abstract]   [Full Text] [Related]  

  • 32. Analysis of bacterial function by multi-colour fluorescence flow cytometry and single cell sorting.
    Nebe-von-Caron G; Stephens PJ; Hewitt CJ; Powell JR; Badley RA
    J Microbiol Methods; 2000 Sep; 42(1):97-114. PubMed ID: 11000436
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A method for the regulation of microbial population density during continuous culture at high growth rates.
    Martin GA; Hempfling WP
    Arch Microbiol; 1976 Feb; 107(1):41-7. PubMed ID: 3144
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis and IbM simulation of the stages in bacterial lag phase: basis for an updated definition.
    Prats C; Giró A; Ferrer J; López D; Vives-Rego J
    J Theor Biol; 2008 May; 252(1):56-68. PubMed ID: 18329047
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Construction and study of mathematical models of the dynamics of bacterial biomass growth taking into account the effect of interchangeable metabolic links].
    Zheleztsova EN; Ugodchikov GA
    Zh Mikrobiol Epidemiol Immunobiol; 1980 Jan; (1):64-8. PubMed ID: 6155011
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A rapid method for determination of in vitro susceptibility to antibiotics with a bulk acoustic wave bacterial growth biosensor.
    Tan H; Le D; Li J; Wei W; Yao S
    Lett Appl Microbiol; 1998 Jul; 27(1):57-61. PubMed ID: 9722998
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adaptastat--a new method for optimising of bacterial growth conditions in continuous culture: Interactive substrate limitation based on dissolved oxygen measurement.
    Tomson K; Barber J; Vanatalu K
    J Microbiol Methods; 2006 Mar; 64(3):380-90. PubMed ID: 15992952
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Precise regulation of the relative rates of surface area and volume synthesis in bacterial cells growing in dynamic environments.
    Shi H; Hu Y; Odermatt PD; Gonzalez CG; Zhang L; Elias JE; Chang F; Huang KC
    Nat Commun; 2021 Mar; 12(1):1975. PubMed ID: 33785742
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bacterial adhesion measured by growth of adherent organisms.
    Sokurenko EV; McMackin VA; Hasty DL
    Methods Enzymol; 1995; 253():519-28. PubMed ID: 7476414
    [No Abstract]   [Full Text] [Related]  

  • 40. Phenotypic indications of FtsZ inhibition in hok/sok-induced bacterial growth changes and stress response.
    Chukwudi CU; Good L
    Microb Pathog; 2018 Jan; 114():393-401. PubMed ID: 29233778
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.