BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 16704200)

  • 21. Surface response methodology for the study of supported membrane formation.
    Rossi C; Briand E; Parot P; Odorico M; Chopineau J
    J Phys Chem B; 2007 Jul; 111(26):7567-76. PubMed ID: 17567062
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Membrane on a chip: a functional tethered lipid bilayer membrane on silicon oxide surfaces.
    Atanasov V; Knorr N; Duran RS; Ingebrandt S; Offenhäusser A; Knoll W; Köper I
    Biophys J; 2005 Sep; 89(3):1780-8. PubMed ID: 16127170
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrochemical impedance spectroscopy of tethered bilayer membranes.
    Valincius G; Meškauskas T; Ivanauskas F
    Langmuir; 2012 Jan; 28(1):977-90. PubMed ID: 22126190
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional incorporation of the pore forming segment of AChR M2 into tethered bilayer lipid membranes.
    Vockenroth IK; Atanasova PP; Long JR; Jenkins AT; Knoll W; Köper I
    Biochim Biophys Acta; 2007 May; 1768(5):1114-20. PubMed ID: 17368423
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A cholesterol-based tether for creating photopatterned lipid membrane arrays on both a silica and gold surface.
    Han X; Achalkumar AS; Bushby RJ; Evans SD
    Chemistry; 2009 Jun; 15(26):6363-70. PubMed ID: 19472226
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel method to fabricate patterned bilayer lipid membranes.
    Han X; Critchley K; Zhang L; Pradeep SN; Bushby RJ; Evans SD
    Langmuir; 2007 Jan; 23(3):1354-8. PubMed ID: 17241058
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfluidic fabrication of addressable tethered lipid bilayer arrays and optimization using SPR with silane-derivatized nanoglassy substrates.
    Taylor JD; Phillips KS; Cheng Q
    Lab Chip; 2007 Jul; 7(7):927-30. PubMed ID: 17594015
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling ion transport in tethered bilayer lipid membranes. 1. Passive ion permeation.
    Robertson JW; Friedrich MG; Kibrom A; Knoll W; Naumann RL; Walz D
    J Phys Chem B; 2008 Aug; 112(34):10475-82. PubMed ID: 18680332
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of air-stable, supported membrane arrays with photolithography for study of phosphoinositide-protein interactions using surface plasmon resonance imaging.
    Wang Z; Wilkop T; Han JH; Dong Y; Linman MJ; Cheng Q
    Anal Chem; 2008 Aug; 80(16):6397-404. PubMed ID: 18620431
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tethered bilayer lipid membranes self-assembled on mercury electrodes.
    Moncelli MR; Becucci L; Schiller SM
    Bioelectrochemistry; 2004 Jun; 63(1-2):161-7. PubMed ID: 15110267
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nitrogen-14 solid-state NMR spectroscopy of aligned phospholipid bilayers to probe peptide-lipid interaction and oligomerization of membrane associated peptides.
    Ramamoorthy A; Lee DK; Santos JS; Henzler-Wildman KA
    J Am Chem Soc; 2008 Aug; 130(33):11023-9. PubMed ID: 18646853
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interrogating interfacial organization in planar bilayer structures.
    Domińska M; Krysiński P; Blanchard GJ
    Langmuir; 2008 Aug; 24(16):8785-93. PubMed ID: 18616308
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of the structure of cholesterol-based tethered bilayer lipid membranes on ionophore activity.
    Kendall JK; Johnson BR; Symonds PH; Imperato G; Bushby RJ; Gwyer JD; van Berkel C; Evans SD; Jeuken LJ
    Chemphyschem; 2010 Jul; 11(10):2191-8. PubMed ID: 20512836
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sensing of pathogenic bacteria based on their interaction with supported bilayer membranes studied by impedance spectroscopy and surface plasmon resonance.
    Tun TN; Cameron PJ; Jenkins AT
    Biosens Bioelectron; 2011 Oct; 28(1):227-31. PubMed ID: 21835605
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Loosely packed self-assembled monolayer of N-hexadecyl-3,6-di(p-mercaptophenylacetylene)carbazole on gold and its application in biomimetic membrane research.
    Bao H; Peng Z; Wang E; Dong S
    Langmuir; 2004 Dec; 20(25):10992-7. PubMed ID: 15568850
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure and properties of tethered bilayer lipid membranes with unsaturated anchor molecules.
    Budvytyte R; Valincius G; Niaura G; Voiciuk V; Mickevicius M; Chapman H; Goh HZ; Shekhar P; Heinrich F; Shenoy S; Lösche M; Vanderah DJ
    Langmuir; 2013 Jul; 29(27):8645-56. PubMed ID: 23745652
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stable supported lipid bilayers on zirconium phosphonate surfaces.
    Fabre RM; Talham DR
    Langmuir; 2009 Nov; 25(21):12644-52. PubMed ID: 19711922
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lipid bilayer tethered inside a nanoporous support: a solid-state nuclear magnetic resonance investigation.
    Wattraint O; Arnold A; Auger M; Bourdillon C; Sarazin C
    Anal Biochem; 2005 Jan; 336(2):253-61. PubMed ID: 15620890
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrochemical Impedance Spectroscopy as a Convenient Tool to Characterize Tethered Bilayer Membranes.
    Penkauskas T; Ambrulevičius F; Valinčius G
    Methods Mol Biol; 2022; 2402():31-59. PubMed ID: 34854034
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation of an electrochemical biosensor based on lipid membranes in nanoporous alumina.
    Largueze JB; Kirat KE; Morandat S
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):33-40. PubMed ID: 20417072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.