BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 16704222)

  • 1. Identification of formaldehyde-induced modifications in proteins: reactions with insulin.
    Metz B; Kersten GF; Baart GJ; de Jong A; Meiring H; ten Hove J; van Steenbergen MJ; Hennink WE; Crommelin DJ; Jiskoot W
    Bioconjug Chem; 2006; 17(3):815-22. PubMed ID: 16704222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of formaldehyde-induced modifications in proteins: reactions with model peptides.
    Metz B; Kersten GF; Hoogerhout P; Brugghe HF; Timmermans HA; de Jong A; Meiring H; ten Hove J; Hennink WE; Crommelin DJ; Jiskoot W
    J Biol Chem; 2004 Feb; 279(8):6235-43. PubMed ID: 14638685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the detoxification mechanism of formaldehyde-treated tetanus toxin.
    Thaysen-Andersen M; Jørgensen SB; Wilhelmsen ES; Petersen JW; Højrup P
    Vaccine; 2007 Mar; 25(12):2213-27. PubMed ID: 17240009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel Formaldehyde-Induced Modifications of Lysine Residue Pairs in Peptides and Proteins: Identification and Relevance to Vaccine Development.
    Michiels TJM; Schöneich C; Hamzink MRJ; Meiring HD; Kersten GFA; Jiskoot W; Metz B
    Mol Pharm; 2020 Nov; 17(11):4375-4385. PubMed ID: 33017153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mass spectrometric identification of formaldehyde-induced peptide modifications under in vivo protein cross-linking conditions.
    Toews J; Rogalski JC; Clark TJ; Kast J
    Anal Chim Acta; 2008 Jun; 618(2):168-83. PubMed ID: 18513538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Formaldehyde-Induced Modifications in Diphtheria Toxin.
    Metz B; Michiels T; Uittenbogaard J; Danial M; Tilstra W; Meiring HD; Hennink WE; Crommelin DJA; Kersten GFA; Jiskoot W
    J Pharm Sci; 2020 Jan; 109(1):543-557. PubMed ID: 31678246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formaldehyde-induced histone modifications in vitro.
    Lu K; Boysen G; Gao L; Collins LB; Swenberg JA
    Chem Res Toxicol; 2008 Aug; 21(8):1586-93. PubMed ID: 18656964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mass spectrometry reveals the chemistry of formaldehyde cross-linking in structured proteins.
    Tayri-Wilk T; Slavin M; Zamel J; Blass A; Cohen S; Motzik A; Sun X; Shalev DE; Ram O; Kalisman N
    Nat Commun; 2020 Jun; 11(1):3128. PubMed ID: 32561732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing alpha-crystallin structure using chemical cross-linkers and mass spectrometry.
    Peterson JJ; Young MM; Takemoto LJ
    Mol Vis; 2004 Nov; 10():857-66. PubMed ID: 15570221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural characterization of formaldehyde-induced cross-links between amino acids and deoxynucleosides and their oligomers.
    Lu K; Ye W; Zhou L; Collins LB; Chen X; Gold A; Ball LM; Swenberg JA
    J Am Chem Soc; 2010 Mar; 132(10):3388-99. PubMed ID: 20178313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formaldehyde cross-linking and structural proteomics: Bridging the gap.
    Srinivasa S; Ding X; Kast J
    Methods; 2015 Nov; 89():91-8. PubMed ID: 25979347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accessibility governs the relative reactivity of basic residues in formaldehyde-induced protein modifications.
    Toews J; Rogalski JC; Kast J
    Anal Chim Acta; 2010 Aug; 676(1-2):60-7. PubMed ID: 20800743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactions of formaldehyde plus acetaldehyde with deoxyguanosine and DNA: formation of cyclic deoxyguanosine adducts and formaldehyde cross-links.
    Cheng G; Shi Y; Sturla SJ; Jalas JR; McIntee EJ; Villalta PW; Wang M; Hecht SS
    Chem Res Toxicol; 2003 Feb; 16(2):145-52. PubMed ID: 12588185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure characterization of functional histidine residues and carbethoxylated derivatives in peptides and proteins by mass spectrometry.
    Kalkum M; Przybylski M; Glocker MO
    Bioconjug Chem; 1998; 9(2):226-35. PubMed ID: 9548538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of amino acid residues participating in intermolecular salt bridges between self-associating proteins.
    Winters MS; Day RA
    Anal Biochem; 2002 Oct; 309(1):48-59. PubMed ID: 12381361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LC-MS/MS Coupled with a Stable-Isotope Dilution Method for the Quantitation of Thioproline-Glycine: A Novel Metabolite in Formaldehyde- and Oxidative Stress-Exposed Cells.
    Pan G; Ham YH; Chan HW; Yao J; Chan W
    Chem Res Toxicol; 2020 Jul; 33(7):1989-1996. PubMed ID: 32633961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of protein modification by 4-hydroxy-2-nonenal and other short chain aldehydes analyzed by electrospray ionization tandem mass spectrometry.
    Fenaille F; Guy PA; Tabet JC
    J Am Soc Mass Spectrom; 2003 Mar; 14(3):215-26. PubMed ID: 12648928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of acrolein-induced protein cross-links.
    Ishii T; Yamada T; Mori T; Kumazawa S; Uchida K; Nakayama T
    Free Radic Res; 2007 Nov; 41(11):1253-60. PubMed ID: 17922343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass spectroscopic characterization of protein modification by malondialdehyde.
    Ishii T; Kumazawa S; Sakurai T; Nakayama T; Uchida K
    Chem Res Toxicol; 2006 Jan; 19(1):122-9. PubMed ID: 16411665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utility of formaldehyde cross-linking and mass spectrometry in the study of protein-protein interactions.
    Sutherland BW; Toews J; Kast J
    J Mass Spectrom; 2008 Jun; 43(6):699-715. PubMed ID: 18438963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.