These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 16705000)

  • 1. Nutrient availability and atmospheric CO2 partial pressure modulate the effects of nutrient heterogeneity on the size structure of populations in grassland species.
    Maestre FT; Reynolds JF
    Ann Bot; 2006 Jul; 98(1):227-35. PubMed ID: 16705000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soil nutrient heterogeneity interacts with elevated CO2 and nutrient availability to determine species and assemblage responses in a model grassland community.
    Maestre FT; Bradford MA; Reynolds JF
    New Phytol; 2005 Dec; 168(3):637-50. PubMed ID: 16313646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomass responses to elevated CO2, soil heterogeneity and diversity: an experimental assessment with grassland assemblages.
    Maestre FT; Reynolds JF
    Oecologia; 2007 Mar; 151(3):512-20. PubMed ID: 17048009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amount or pattern? Grassland responses to the heterogeneity and availability of two key resources.
    Maestre FT; Reynolds JF
    Ecology; 2007 Feb; 88(2):501-11. PubMed ID: 17479767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Species-specific effects of live roots and shoot litter on soil decomposer abundances do not forecast plant litter-nitrogen uptake.
    Saj S; Mikola J; Ekelund F
    Oecologia; 2009 Aug; 161(2):331-41. PubMed ID: 19484477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soil organisms shape the competition between grassland plant species.
    Sabais AC; Eisenhauer N; König S; Renker C; Buscot F; Scheu S
    Oecologia; 2012 Dec; 170(4):1021-32. PubMed ID: 22678109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arbuscular mycorrhiza infection enhances the growth response of Lolium perenne to elevated atmospheric pCO(2).
    Hartwig UA; Wittmann P; Braun R; Hartwig-Räz B; Jansa J; Mozafar A; Lüscher A; Leuchtmann A; Frossard E; Nösberger J
    J Exp Bot; 2002 May; 53(371):1207-13. PubMed ID: 11971931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity of the invasive geophyte Oxalis pes-caprae to nutrient availability and competition.
    Sala A; Verdaguer D; Vilà M
    Ann Bot; 2007 Apr; 99(4):637-45. PubMed ID: 17298990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic extractability and uptake by velvetgrass Holcus lanatus and ryegrass Lolium perenne in variously treated soils polluted by tailing spills.
    Karczewska A; Lewińska K; Gałka B
    J Hazard Mater; 2013 Nov; 262():1014-21. PubMed ID: 23044199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of extreme weather events and legume presence on mycorrhization of Plantago lanceolata and Holcus lanatus in the field.
    Walter J; Kreyling J; Singh BK; Jentsch A
    Plant Biol (Stuttg); 2016 Mar; 18(2):262-70. PubMed ID: 26284575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competition between grassland plants of different initial sizes.
    Newbery DM; Newman EI
    Oecologia; 1978 Jan; 33(3):361-380. PubMed ID: 28309598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential contribution of natural enemies to patterns of local adaptation in plants.
    Crémieux L; Bischoff A; Šmilauerová M; Lawson CS; Mortimer SR; Doležal J; Lanta V; Edwards AR; Brook AJ; Tscheulin T; Macel M; Lepš J; Müller-Schärer H; Steinger T
    New Phytol; 2008; 180(2):524-533. PubMed ID: 18627495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The fate of photosynthetically-fixed carbon in Lolium perenne grassland as modified by elevated CO2 and sward management.
    Hill PW; Marshall C; Williams GG; Blum H; Harmens H; Jones DL; Farrar JF
    New Phytol; 2007; 173(4):766-777. PubMed ID: 17286825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactive effects of plant species diversity and elevated CO2 on soil biota and nutrient cycling.
    Niklaus PA; Alphei J; Kampichler C; Kandeler E; Körner C; Tscherko D; Wohlfender M
    Ecology; 2007 Dec; 88(12):3153-63. PubMed ID: 18229849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Root growth and plant biomass in Lolium perenne exploring a nutrient-rich patch in soil.
    Nakamura R; Kachi N; Suzuki J
    J Plant Res; 2008 Nov; 121(6):547-57. PubMed ID: 18751939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant-plant interactions mediate the plastic and genotypic response of Plantago asiatica to CO2: an experiment with plant populations from naturally high CO2 areas.
    van Loon MP; Rietkerk M; Dekker SC; Hikosaka K; Ueda MU; Anten NP
    Ann Bot; 2016 Jun; 117(7):1197-207. PubMed ID: 27192707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of mineral nitrogen limitation, competition, arbuscular mycorrhiza, and their respective interactions, on morphological and chemical plant traits of Plantago lanceolata.
    Pankoke H; Höpfner I; Matuszak A; Beyschlag W; Müller C
    Phytochemistry; 2015 Oct; 118():149-61. PubMed ID: 26296746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N capture by Plantago lanceolata and Brassica napus from organic material: the influence of spatial dispersion, plant competition and an arbuscular mycorrhizal fungus.
    Hodge A
    J Exp Bot; 2003 Oct; 54(391):2331-42. PubMed ID: 14504301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of CO
    Chu CC; Field CB; Mooney HA
    Oecologia; 1996 Sep; 107(4):433-440. PubMed ID: 28307384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neighbor species differentially alter resistance phenotypes in Plantago.
    Barton KE; Bowers MD
    Oecologia; 2006 Dec; 150(3):442-52. PubMed ID: 16944243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.