These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 16705421)

  • 1. An experimental and theoretical study of the enantioselective deprotonation of cyclohexene oxide with isopinocampheyl-based chiral lithium amides.
    Xiao Y; Jung D; Gund T; Malhotra SV
    J Mol Model; 2006 Jul; 12(5):681-6. PubMed ID: 16705421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enantioselective conjugate addition of a lithium ester enolate catalyzed by chiral lithium amides: a possible intermediate characterized.
    Lecachey B; Duguet N; Oulyadi H; Fressigné C; Harrison-Marchand A; Yamamoto Y; Tomioka K; Maddaluno J
    Org Lett; 2009 May; 11(9):1907-10. PubMed ID: 19358566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel mixed dimer of a norephedrine-derived chiral lithium amide and 2-lithium-1-methylimidazole, and catalytic enantioselective deprotonation of cyclohexene oxide.
    Amedjkouh M; Pettersen D; Nilsson Lill SO; Davidsson O; Ahlberg P
    Chemistry; 2001 Oct; 7(20):4368-77. PubMed ID: 11695670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enantioselective synthesis of α-silylamines by Meerwein-Ponndorf-Verley-type reduction of α-silylimines by a chiral lithium amide.
    Kondo Y; Sasaki M; Kawahata M; Yamaguchi K; Takeda K
    J Org Chem; 2014 Apr; 79(8):3601-9. PubMed ID: 24713026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Density functional theory studies on the mechanisms of regioselective allylic and cis-vinylic deprotonation of allyl amides and allylamines.
    Haeffner F; Jacobson MA; Keresztes I; Williard PG
    J Am Chem Soc; 2004 Dec; 126(51):17032-9. PubMed ID: 15612742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enantioselective conjugate addition of a lithium ester enolate catalyzed by chiral lithium amides.
    Duguet N; Harrison-Marchand A; Maddaluno J; Tomioka K
    Org Lett; 2006 Dec; 8(25):5745-8. PubMed ID: 17134262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stereoselective reactions. XXXII. Enantioselective deprotonation of 4-tert-butylcyclohexanone by fluorine-containing chiral lithium amides derived from 1-phenylethylamine and 1-(1-naphthyl)ethylamine.
    Aoki K; Koga K
    Chem Pharm Bull (Tokyo); 2000 Apr; 48(4):571-4. PubMed ID: 10783083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of the kinetic acidity from substrate conformation--stereochemical course of the deprotonation of cyclohexenyl carbamates.
    Becker J; Grimme S; Fröhlich R; Hoppe D
    Angew Chem Int Ed Engl; 2007; 46(10):1645-9. PubMed ID: 17397074
    [No Abstract]   [Full Text] [Related]  

  • 9. Analysis of an asymmetric addition with a 2:1 mixed lithium amide/n-butyllithium aggregate.
    Liu J; Li D; Sun C; Williard PG
    J Org Chem; 2008 Jun; 73(11):4045-52. PubMed ID: 18459811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative molecular field analysis (CoMFA) study using semiempirical, density functional, ab initio methods and pharmacophore derivation using DISCOtech on sigma 1 ligands.
    Jung D; Floyd J; Gund TM
    J Comput Chem; 2004 Aug; 25(11):1385-99. PubMed ID: 15185333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stereoselective reactions. XXXIV. Enantioselective deprotonation of prochiral 4-substituted cyclohexanones using chiral bidentate lithium amides having a bulky group instead of a phenyl group on the chiral carbon.
    Toriyama M; Sugasawa K; Motohashi S; Tokutake N; Koga K
    Chem Pharm Bull (Tokyo); 2001 Apr; 49(4):468-72. PubMed ID: 11310676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enantioselective lithiation of O-alkyl and O-alk-2-enyl Carbamates in the presence of (-)-sparteine and (-)-alpha-isosparteine. A theoretical study.
    Würthwein EU; Hoppe D
    J Org Chem; 2005 May; 70(11):4443-51. PubMed ID: 15903323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic and NMR spectroscopic studies of chiral mixed sodium/lithium amides used for the deprotonation of cyclohexene oxide.
    Sott R; Granander J; Williamson C; Hilmersson G
    Chemistry; 2005 Aug; 11(16):4785-92. PubMed ID: 15929140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct enantioselective conjugate addition of carboxylic acids with chiral lithium amides as traceless auxiliaries.
    Lu P; Jackson JJ; Eickhoff JA; Zakarian A
    J Am Chem Soc; 2015 Jan; 137(2):656-9. PubMed ID: 25562717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enantioselective synthesis of cyclopropylcarboxamides using s-BuLi-sparteine-mediated metallation.
    Lauru S; Simpkins NS; Gethin D; Wilson C
    Chem Commun (Camb); 2008 Nov; (42):5390-2. PubMed ID: 18985220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetric construction of quaternary carbon centers by sequential conjugate addition of lithium amide and in situ alkylation: utility in the synthesis of (-)-aspidospermidine.
    Suzuki M; Kawamoto Y; Sakai T; Yamamoto Y; Tomioka K
    Org Lett; 2009 Feb; 11(3):653-5. PubMed ID: 19115978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chiral gamma-amino amide synthesis by heterobimetallic lanthanum/lithium/Pybox-catalyzed direct asymmetric mannich-type reactions of alpha-keto anilides.
    Lu G; Morimoto H; Matsunaga S; Shibasaki M
    Angew Chem Int Ed Engl; 2008; 47(36):6847-50. PubMed ID: 18651689
    [No Abstract]   [Full Text] [Related]  

  • 18. Highly enantioselective hydroaminoalkylation of secondary amines catalyzed by group 5 metal amides with chiral biarylamidate ligands.
    Zi G; Zhang F; Song H
    Chem Commun (Camb); 2010 Sep; 46(34):6296-8. PubMed ID: 20668747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New chiral lanthanide amide ate complexes for the catalysed synthesis of scalemic nitrogen-containing heterocycles.
    Aillaud I; Collin J; Duhayon C; Guillot R; Lyubov D; Schulz E; Trifonov A
    Chemistry; 2008; 14(7):2189-200. PubMed ID: 18081126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental validation of Gaussian-3 lithium cation affinities of amides: implications for the gas-phase lithium cation basicity scale.
    Tsang Y; Siu FM; Ma NL; Tsang CW
    Rapid Commun Mass Spectrom; 2002; 16(3):229-37. PubMed ID: 11803545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.