These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 16705421)

  • 21. Direct Enantioselective and Regioselective Alkylation of β,γ-Unsaturated Carboxylic Acids with Chiral Lithium Amides as Traceless Auxiliaries.
    Yu K; Miao B; Wang W; Zakarian A
    Org Lett; 2019 Mar; 21(6):1930-1934. PubMed ID: 30835486
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Catalytic asymmetric protonation of lithium enolates using amino acid derivatives as chiral proton sources.
    Mitsuhashi K; Ito R; Arai T; Yanagisawa A
    Org Lett; 2006 Apr; 8(8):1721-4. PubMed ID: 16597150
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Highly enantioselective direct alkylation of arylacetic acids with chiral lithium amides as traceless auxiliaries.
    Stivala CE; Zakarian A
    J Am Chem Soc; 2011 Aug; 133(31):11936-9. PubMed ID: 21744818
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chiral diamines 4: a computational study of the enantioselective deprotonation of Boc-pyrrolidine with an alkyllithium in the presence of a chiral diamine.
    Wiberg KB; Bailey WF
    J Am Chem Soc; 2001 Aug; 123(34):8231-8. PubMed ID: 11516274
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Asymmetric synthesis using chiral bases].
    Koga K; Odashima K
    Yakugaku Zasshi; 1997 Nov; 117(10-11):800-16. PubMed ID: 9414592
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental and theoretical investigation of the decomposition of lithiated hydroxyl side-chain amino acids.
    Ye SJ; Armentrout PB
    J Phys Chem B; 2008 Aug; 112(33):10303-13. PubMed ID: 18665627
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lithium Enolates in the Enantioselective Construction of Tetrasubstituted Carbon Centers with Chiral Lithium Amides as Noncovalent Stereodirecting Auxiliaries.
    Yu K; Lu P; Jackson JJ; Nguyen TD; Alvarado J; Stivala CE; Ma Y; Mack KA; Hayton TW; Collum DB; Zakarian A
    J Am Chem Soc; 2017 Jan; 139(1):527-533. PubMed ID: 27997174
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reaction of the stable silylene Si[(NCH2But)2C6H4-1,2] with lithium amides.
    Gehrhus B; Hitchcock PB; Parruci M
    Dalton Trans; 2005 Aug; (16):2720-5. PubMed ID: 16075111
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Asymmetric syntheses of the homalium alkaloids (-)-(S,S)-homaline and (-)-(R,R)-hopromine.
    Davies SG; Lee JA; Roberts PM; Stonehouse JP; Thomson JE
    J Org Chem; 2012 Aug; 77(16):7028-45. PubMed ID: 22827544
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis and catalytic activity of group 5 metal amides with chiral biaryldiamine-based ligands.
    Zhang F; Song H; Zi G
    Dalton Trans; 2011 Feb; 40(7):1547-66. PubMed ID: 21218246
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bond dissociation energies of solvated silver(I)-amide complexes: competitive threshold collision-induced dissociations and calculations.
    Romanov V; Siu CK; Verkerk UH; Hopkinson AC; Siu KW
    J Phys Chem A; 2010 Jul; 114(26):6964-71. PubMed ID: 20545377
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Asymmetric synthesis of 3,4-anti- and 3,4-syn-substituted aminopyrrolidines via lithium amide conjugate addition.
    Davies SG; Garner AC; Goddard EC; Kruchinin D; Roberts PM; Smith AD; Rodriguez-Solla H; Thomson JE; Toms SM
    Org Biomol Chem; 2007 Jun; 5(12):1961-9. PubMed ID: 17551646
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Peptide models. XXXIII. Extrapolation of low-level Hartree-Fock data of peptide conformation to large basis set SCF, MP2, DFT, and CCSD(T) results. The Ramachandran surface of alanine dipeptide computed at various levels of theory.
    Perczel A; Farkas O; Jákli I; Topol IA; Csizmadia IG
    J Comput Chem; 2003 Jul; 24(9):1026-42. PubMed ID: 12759903
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energetics and mechanism for the deamination of lithiated cysteine.
    Armentrout PB; Ye SJ; Gabriel A; Moision RM
    J Phys Chem B; 2010 Mar; 114(11):3938-49. PubMed ID: 20184311
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Resonance structures of the amide bond: the advantages of planarity.
    Mujika JI; Matxain JM; Eriksson LA; Lopez X
    Chemistry; 2006 Sep; 12(27):7215-24. PubMed ID: 16807968
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Density functional theory calculations and vibrational circular dichroism of aromatic foldamers.
    Ducasse L; Castet F; Fritsch A; Huc I; Buffeteau T
    J Phys Chem A; 2007 Jun; 111(23):5092-8. PubMed ID: 17506537
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polyglycine conformational analysis: calculated vs experimental gas-phase basicities and proton affinities.
    Chung-Phillips A
    J Phys Chem A; 2005 Jul; 109(26):5917-32. PubMed ID: 16833926
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reaction mechanism of the acidic hydrolysis of highly twisted amides: Rate acceleration caused by the twist of the amide bond.
    Mujika JI; Formoso E; Mercero JM; Lopez X
    J Phys Chem B; 2006 Aug; 110(30):15000-11. PubMed ID: 16869615
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental and theoretical NMR study of 4-(3-cyclohexen-1-yl)pyridine.
    Parlak C; Alver O; Senyel M
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Apr; 69(4):1252-6. PubMed ID: 17716939
    [TBL] [Abstract][Full Text] [Related]  

  • 40. De novo synthesis of (+)-isofregenedol.
    Riou M; Barriault L
    J Org Chem; 2008 Sep; 73(18):7436-9. PubMed ID: 18698826
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.