These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 16706422)
1. Periodic inclusion of room-temperature-ferromagnetic metal phosphide nanoparticles in carbon nanotubes. Jourdain V; Simpson ET; Paillet M; Kasama T; Dunin-Borkowski RE; Poncharal P; Zahab A; Loiseau A; Robertson J; Bernier P J Phys Chem B; 2006 May; 110(20):9759-63. PubMed ID: 16706422 [TBL] [Abstract][Full Text] [Related]
2. Relevant synthesis parameters for the sequential catalytic growth of carbon nanotubes. Jourdain V; Paillet M; Almairac R; Loiseau A; Bernier P J Phys Chem B; 2005 Feb; 109(4):1380-6. PubMed ID: 16851106 [TBL] [Abstract][Full Text] [Related]
3. Ordered arrays of magnetic metal nanotubes and nanowires encapsulated with carbon tubes. Gao C; Tao F; Lin W; Xu Z; Xue Z J Nanosci Nanotechnol; 2008 Sep; 8(9):4494-9. PubMed ID: 19049046 [TBL] [Abstract][Full Text] [Related]
4. Phase-controlled synthesis of transition-metal phosphide nanowires by Ullmann-type reactions. Wang J; Yang Q; Zhang Z; Sun S Chemistry; 2010 Jul; 16(26):7916-24. PubMed ID: 20491119 [TBL] [Abstract][Full Text] [Related]
5. Metallic impurities within residual catalyst metallic nanoparticles are in some cases responsible for "electrocatalytic" effect of carbon nanotubes. Pumera M; Iwai H Chem Asian J; 2009 Apr; 4(4):554-60. PubMed ID: 19235183 [TBL] [Abstract][Full Text] [Related]
6. Ternary cobalt-iron phosphide nanocrystals with controlled compositions, properties, and morphologies from nanorods and nanorice to split nanostructures. Ye E; Zhang SY; Lim SH; Bosman M; Zhang Z; Win KY; Han MY Chemistry; 2011 May; 17(21):5982-8. PubMed ID: 21491516 [TBL] [Abstract][Full Text] [Related]
7. Iron assisted growth of copper-tipped multi-walled carbon nanotubes. Abrams ZR; Szwarcman D; Lereah Y; Markovich G; Hanein Y Nanotechnology; 2007 Dec; 18(49):495602. PubMed ID: 20442476 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of carbon encapsulated magnetic nanoparticles with giant coercivity by a spray pyrolysis approach. Wang JN; Zhang L; Yu F; Sheng ZM J Phys Chem B; 2007 Mar; 111(8):2119-24. PubMed ID: 17269820 [TBL] [Abstract][Full Text] [Related]
9. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. Wang C; Baer DR; Amonette JE; Engelhard MH; Antony J; Qiang Y J Am Chem Soc; 2009 Jul; 131(25):8824-32. PubMed ID: 19496564 [TBL] [Abstract][Full Text] [Related]
10. Tuning of redox properties of iron and iron oxides via encapsulation within carbon nanotubes. Chen W; Pan X; Bao X J Am Chem Soc; 2007 Jun; 129(23):7421-6. PubMed ID: 17508751 [TBL] [Abstract][Full Text] [Related]
11. Heterodoped nanotubes: theory, synthesis, and characterization of phosphorus-nitrogen doped multiwalled carbon nanotubes. Cruz-Silva E; Cullen DA; Gu L; Romo-Herrera JM; Muñoz-Sandoval E; López-Urías F; Sumpter BG; Meunier V; Charlier JC; Smith DJ; Terrones H; Terrones M ACS Nano; 2008 Mar; 2(3):441-8. PubMed ID: 19206568 [TBL] [Abstract][Full Text] [Related]
12. Ambient spark generation to synthesize carbon-encapsulated metal nanoparticles in continuous aerosol manner. Byeon JH; Park JH; Yoon KY; Hwang J Nanoscale; 2009 Dec; 1(3):339-43. PubMed ID: 20648270 [TBL] [Abstract][Full Text] [Related]
13. Fabrication and magnetic properties of Ni nanospheres encapsulated in a fullerene-like carbon. Pol SV; Pol VG; Frydman A; Churilov GN; Gedanken A J Phys Chem B; 2005 May; 109(19):9495-8. PubMed ID: 16852141 [TBL] [Abstract][Full Text] [Related]
14. Single crystal metals encapsulated in carbon nanoparticles. Ruoff RS; Lorents DC; Chan B; Malhotra R; Subramoney S Science; 1993 Jan; 259(5093):346-8. PubMed ID: 17832348 [TBL] [Abstract][Full Text] [Related]
15. Electron holography for the study of magnetic nanomaterials. Thomas JM; Simpson ET; Kasama T; Dunin-Borkowski RE Acc Chem Res; 2008 May; 41(5):665-74. PubMed ID: 18459804 [TBL] [Abstract][Full Text] [Related]
16. Control of phase in phosphide nanoparticles produced by metal nanoparticle transformation: Fe2P and FeP. Muthuswamy E; Kharel PR; Lawes G; Brock SL ACS Nano; 2009 Aug; 3(8):2383-93. PubMed ID: 19653639 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of carbon nanotubes using mesoporous Fe-MCM-41 catalysts. Ko JR; Ahn WS J Nanosci Nanotechnol; 2006 Nov; 6(11):3442-5. PubMed ID: 17252785 [TBL] [Abstract][Full Text] [Related]
18. The synthesis of high coercivity cobalt-in-carbon nanotube hybrid structures and their optical limiting properties. Narayanan TN; Suchand Sandeep CS; Shaijumon MM; Ajayan PM; Philip R; Anantharaman MR Nanotechnology; 2009 Jul; 20(28):285702. PubMed ID: 19550014 [TBL] [Abstract][Full Text] [Related]
19. Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst. Chen W; Fan Z; Pan X; Bao X J Am Chem Soc; 2008 Jul; 130(29):9414-9. PubMed ID: 18576652 [TBL] [Abstract][Full Text] [Related]
20. Superparamagnetic and ferromagnetic Ni nanorod arrays fabricated on Si substrates using electroless deposition. Liu CM; Tseng YC; Chen C; Hsu MC; Chao TY; Cheng YT Nanotechnology; 2009 Oct; 20(41):415703. PubMed ID: 19762942 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]