These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 16706478)

  • 1. Bacteria counting with impedance spectroscopy in a micro probe station.
    Jönsson M; Welch K; Hamp S; Strømme M
    J Phys Chem B; 2006 May; 110(20):10165-9. PubMed ID: 16706478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of a microfluidic device for counting of bacteria.
    Inatomi KI; Izuo SI; Lee SS
    Lett Appl Microbiol; 2006 Sep; 43(3):296-300. PubMed ID: 16910935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impedimetric approach for quantifying low bacteria concentrations based on the changes produced in the electrode-solution interface during the pre-attachment stage.
    Muñoz-Berbel X; Vigués N; Jenkins AT; Mas J; Muñoz FJ
    Biosens Bioelectron; 2008 May; 23(10):1540-6. PubMed ID: 18308537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of high-density bacterial colony arrays and patterns by the ink-jet method.
    Xu T; Petridou S; Lee EH; Roth EA; Vyavahare NR; Hickman JJ; Boland T
    Biotechnol Bioeng; 2004 Jan; 85(1):29-33. PubMed ID: 14705009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [A method for improving measuring accuracy in multi-channel impedance spectroscopy (MIS)].
    Thiel F; Hartung C
    Biomed Tech (Berl); 2004 Aug; 49(7-8):194-8. PubMed ID: 15481406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wideband impedance spectrum analyzer for process automation applications.
    Doerner S; Schneider T; Hauptmann PR
    Rev Sci Instrum; 2007 Oct; 78(10):105101. PubMed ID: 17979452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple and fast method for determining colony forming units.
    Sieuwerts S; de Bok FA; Mols E; de vos WM; Vlieg JE
    Lett Appl Microbiol; 2008 Oct; 47(4):275-8. PubMed ID: 18778376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On-line biomass monitoring of CHO perfusion culture with scanning dielectric spectroscopy.
    Cannizzaro C; Gügerli R; Marison I; von Stockar U
    Biotechnol Bioeng; 2003 Dec; 84(5):597-610. PubMed ID: 14574694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and automated enumeration of viable bacteria in compost using a micro-colony auto counting system.
    Wang X; Yamaguchi N; Someya T; Nasu M
    J Microbiol Methods; 2007 Oct; 71(1):1-6. PubMed ID: 17669529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of bacterial cells by impedance spectra via fluidic electrodes in a microfluidic device.
    Zhu T; Pei Z; Huang J; Xiong C; Shi S; Fang J
    Lab Chip; 2010 Jun; 10(12):1557-60. PubMed ID: 20517558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-line monitoring of lipid storage in yeasts using impedance spectroscopy.
    Maskow T; Röllich A; Fetzer I; Ackermann JU; Harms H
    J Biotechnol; 2008 May; 135(1):64-70. PubMed ID: 18395924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle-antibody conjugates for detection of Escherichia coli O157:H7 in food samples.
    Varshney M; Li Y
    Biosens Bioelectron; 2007 May; 22(11):2408-14. PubMed ID: 17045791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold screen-printed-based impedimetric immunobiosensors for direct and sensitive Escherichia coli quantisation.
    Escamilla-Gómez V; Campuzano S; Pedrero M; Pingarrón JM
    Biosens Bioelectron; 2009 Jul; 24(11):3365-71. PubMed ID: 19481924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An impedimetric sensor for monitoring the growth of Staphylococcus epidermidis.
    Oliver LM; Dunlop PS; Byrne JA; Blair IS; Boyle M; McGuigan KG; McAdams ET
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():535-8. PubMed ID: 17946403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacteria detection utilizing electrical conductivity.
    Lu YC; Chuang YS; Chen YY; Shu AC; Hsu HY; Chang HY; Yew TR
    Biosens Bioelectron; 2008 Jul; 23(12):1856-61. PubMed ID: 18434130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micro hole-based cell chip with impedance spectroscopy.
    Cho S; Thielecke H
    Biosens Bioelectron; 2007 Mar; 22(8):1764-8. PubMed ID: 17008086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Label-free detection of bacteria by electrochemical impedance spectroscopy: comparison to surface plasmon resonance.
    Maalouf R; Fournier-Wirth C; Coste J; Chebib H; Saïkali Y; Vittori O; Errachid A; Cloarec JP; Martelet C; Jaffrezic-Renault N
    Anal Chem; 2007 Jul; 79(13):4879-86. PubMed ID: 17523594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of DNA immobilization on gold electrodes for label-free detection by electrochemical impedance spectroscopy.
    Keighley SD; Li P; Estrela P; Migliorato P
    Biosens Bioelectron; 2008 Mar; 23(8):1291-7. PubMed ID: 18178423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing.
    Gawad S; Schild L; Renaud PH
    Lab Chip; 2001 Sep; 1(1):76-82. PubMed ID: 15100895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resolution of binary mixtures of microorganisms using electrochemical impedance spectroscopy and artificial neural networks.
    Muñoz-Berbel X; Vigués N; Mas J; Del Valle M; Muñoz FJ; Cortina-Puig M
    Biosens Bioelectron; 2008 Dec; 24(4):964-8. PubMed ID: 18783936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.