These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

46 related articles for article (PubMed ID: 16706587)

  • 1. Flow visualization and acoustic consequences of the air moving through a static model of the human larynx.
    Kucinschi BR; Scherer RC; DeWitt KJ; Ng TT
    J Biomech Eng; 2006 Jun; 128(3):380-90. PubMed ID: 16706587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the application of the lattice Boltzmann method to the investigation of glottal flow.
    Kucinschi BR; Afjeh AA; Scherer RC
    J Acoust Soc Am; 2008 Jul; 124(1):523-34. PubMed ID: 18646995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluid-structure-acoustic interactions in an ex vivo porcine phonation model.
    Semmler M; Berry DA; Schützenberger A; Döllinger M
    J Acoust Soc Am; 2021 Mar; 149(3):1657. PubMed ID: 33765793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of Multiple Source Vocalization in the Larynx: How True Folds, False Folds, and Aryepiglottic Folds May Interact.
    Titze IR
    J Speech Lang Hear Res; 2024 Mar; 67(3):802-810. PubMed ID: 38416067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An acoustic source model for asymmetric intraglottal flow with application to reduced-order models of the vocal folds.
    Erath BD; Peterson SD; Weiland KS; Plesniak MW; Zañartu M
    PLoS One; 2019; 14(7):e0219914. PubMed ID: 31344084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Twin vocal folds as a novel evolutionary adaptation for vocal communications in lemurs.
    Nakamura K; Kanaya M; Matsushima D; Dunn JC; Hirabayashi H; Sato K; Tokuda IT; Nishimura T
    Sci Rep; 2024 Feb; 14(1):3631. PubMed ID: 38351102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a Measurement Device for Micro Gas Flowrate Based on Laminar Flow Element with Micro-Curved Surface.
    Wang Z; Xu Y; Liu T; Huang Z; Xie D
    Micromachines (Basel); 2024 May; 15(5):. PubMed ID: 38793233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cycle-to-cycle flow variations in a square duct with a symmetrically oscillating constriction.
    Sherman E; Lambert L; White B; Krane MH; Wei T
    Fluid Dyn Res; 2020 Feb; 52(1):. PubMed ID: 34045778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Event-triggered background-oriented schlieren: high-frequency visualization of a heated jet flow.
    Lyu Z; Cai W; Liu Y
    Opt Lett; 2024 May; 49(10):2565-2568. PubMed ID: 38748106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic, aerodynamic, and vibrational effects of ventricular folds adduction in an ex vivo experiment.
    Xiao Z; Kang J; Su J; Ge P; Zhang S
    Laryngoscope Investig Otolaryngol; 2024 Oct; 9(5):e70008. PubMed ID: 39257727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluid-Structure Interaction Analysis of Aerodynamic and Elasticity Forces During Vocal Fold Vibration.
    Sundström E; Oren L; Farbos de Luzan C; Gutmark E; Khosla S
    J Voice; 2022 Sep; ():. PubMed ID: 36180275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of False Vocal Folds on Intraglottal Velocity Fields.
    Oren L; Khosla S; Farbos de Luzan C; Gutmark E
    J Voice; 2021 Sep; 35(5):695-702. PubMed ID: 32147314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanics of human voice production and control.
    Zhang Z
    J Acoust Soc Am; 2016 Oct; 140(4):2614. PubMed ID: 27794319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of Direct Simultaneous Measurement of Glottal Airflow Velocity, Subglottal Pressure, and High-Speed Imaging Using Flexible Transnasal Endoscope in a Human Subject.
    Kataoka H; Arii S; Fukuhara T; Fujiwara K; Kunimoto Y; Hasegawa K; Takeuchi H
    Yonago Acta Med; 2016 Sep; 59(3):241-247. PubMed ID: 27708541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-Dependent Pressure and Flow Behavior of a Self-oscillating Laryngeal Model With Ventricular Folds.
    Alipour F; Scherer RC
    J Voice; 2015 Nov; 29(6):649-59. PubMed ID: 25873541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational study of false vocal folds effects on unsteady airflows through static models of the human larynx.
    Farbos de Luzan C; Chen J; Mihaescu M; Khosla SM; Gutmark E
    J Biomech; 2015 May; 48(7):1248-57. PubMed ID: 25835787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intraglottal velocity and pressure measurements in a hemilarynx model.
    Oren L; Gutmark E; Khosla S
    J Acoust Soc Am; 2015 Feb; 137(2):935-43. PubMed ID: 25698025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the vocal fold vertical stiffness in a canine model.
    Oren L; Dembinski D; Gutmark E; Khosla S
    J Voice; 2014 May; 28(3):297-304. PubMed ID: 24495431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intraglottal geometry and velocity measurements in canine larynges.
    Oren L; Khosla S; Gutmark E
    J Acoust Soc Am; 2014 Jan; 135(1):380-8. PubMed ID: 24437778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerodynamic and acoustic effects of ventricular gap.
    Alipour F; Karnell M
    J Voice; 2014 Mar; 28(2):154-60. PubMed ID: 24321590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.