These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 16706717)
1. A reversible jump Markov chain Monte Carlo algorithm for bacterial promoter motifs discovery. Nicolas P; Tocquet AS; Miele V; Muri F J Comput Biol; 2006 Apr; 13(3):651-67. PubMed ID: 16706717 [TBL] [Abstract][Full Text] [Related]
2. A transdimensional Bayesian model for pattern recognition in DNA sequences. Li SM; Wakefield J; Self S Biostatistics; 2008 Oct; 9(4):668-85. PubMed ID: 18349034 [TBL] [Abstract][Full Text] [Related]
3. Bayesian restoration of a hidden Markov chain with applications to DNA sequencing. Churchill GA; Lazareva B J Comput Biol; 1999; 6(2):261-77. PubMed ID: 10421527 [TBL] [Abstract][Full Text] [Related]
4. Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo. Huelsenbeck JP; Larget B; Alfaro ME Mol Biol Evol; 2004 Jun; 21(6):1123-33. PubMed ID: 15034130 [TBL] [Abstract][Full Text] [Related]
5. Generalized hierarchical markov models for the discovery of length-constrained sequence features from genome tiling arrays. Gupta M Biometrics; 2007 Sep; 63(3):797-805. PubMed ID: 17825011 [TBL] [Abstract][Full Text] [Related]
6. Modelling heterotachy in phylogenetic inference by reversible-jump Markov chain Monte Carlo. Pagel M; Meade A Philos Trans R Soc Lond B Biol Sci; 2008 Dec; 363(1512):3955-64. PubMed ID: 18852097 [TBL] [Abstract][Full Text] [Related]
7. A Bayesian approach to DNA sequence segmentation. Boys RJ; Henderson DA Biometrics; 2004 Sep; 60(3):573-81; discussion 581-8. PubMed ID: 15339274 [TBL] [Abstract][Full Text] [Related]
8. Bayesian models and Markov chain Monte Carlo methods for protein motifs with the secondary characteristics. Xie J; Kim NK J Comput Biol; 2005 Sep; 12(7):952-70. PubMed ID: 16201915 [TBL] [Abstract][Full Text] [Related]
9. A Gibbs sampler for identification of symmetrically structured, spaced DNA motifs with improved estimation of the signal length. Favorov AV; Gelfand MS; Gerasimova AV; Ravcheev DA; Mironov AA; Makeev VJ Bioinformatics; 2005 May; 21(10):2240-5. PubMed ID: 15728117 [TBL] [Abstract][Full Text] [Related]
10. A clustering approach for estimating parameters of a profile hidden Markov model. Aghdam R; Pezeshk H; Malekpour SA; Shemehsavar S; Eslahchi C Int J Data Min Bioinform; 2013; 8(1):66-82. PubMed ID: 23865165 [TBL] [Abstract][Full Text] [Related]
11. Detection of dispersed short tandem repeats using reversible jump Markov chain Monte Carlo. Liang T; Fan X; Li Q; Li SY Nucleic Acids Res; 2012 Oct; 40(19):e147. PubMed ID: 22753023 [TBL] [Abstract][Full Text] [Related]
13. A profile-based deterministic sequential Monte Carlo algorithm for motif discovery. Liang KC; Wang X; Anastassiou D Bioinformatics; 2008 Jan; 24(1):46-55. PubMed ID: 18024972 [TBL] [Abstract][Full Text] [Related]
14. A Monte Carlo EM algorithm for de novo motif discovery in biomolecular sequences. Bi C IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(3):370-86. PubMed ID: 19644166 [TBL] [Abstract][Full Text] [Related]
15. Repulsive parallel MCMC algorithm for discovering diverse motifs from large sequence sets. Ikebata H; Yoshida R Bioinformatics; 2015 May; 31(10):1561-8. PubMed ID: 25583120 [TBL] [Abstract][Full Text] [Related]
16. Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. Pagel M; Meade A Am Nat; 2006 Jun; 167(6):808-25. PubMed ID: 16685633 [TBL] [Abstract][Full Text] [Related]
17. A continuous-index hidden Markov jump process for modeling DNA copy number data. Stjernqvist S; Rydén T Biostatistics; 2009 Oct; 10(4):773-8. PubMed ID: 19628640 [TBL] [Abstract][Full Text] [Related]
18. A probabilistic solution to the MEG inverse problem via MCMC methods: the reversible jump and parallel tempering algorithms. Bertrand C; Ohmi M; Suzuki R; Kado H IEEE Trans Biomed Eng; 2001 May; 48(5):533-42. PubMed ID: 11341527 [TBL] [Abstract][Full Text] [Related]
19. Bayesian coestimation of phylogeny and sequence alignment. Lunter G; Miklós I; Drummond A; Jensen JL; Hein J BMC Bioinformatics; 2005 Apr; 6():83. PubMed ID: 15804354 [TBL] [Abstract][Full Text] [Related]
20. Inferring regulatory elements from a whole genome. An analysis of Helicobacter pylori sigma(80) family of promoter signals. Vanet A; Marsan L; Labigne A; Sagot MF J Mol Biol; 2000 Mar; 297(2):335-53. PubMed ID: 10715205 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]