BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 16707131)

  • 1. Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor.
    Rao AV; Bhagat SD; Hirashima H; Pajonk GM
    J Colloid Interface Sci; 2006 Aug; 300(1):279-85. PubMed ID: 16707131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of liquids using superhydrophobic aerogels.
    Venkateswara Rao A; Kulkarni MM; Bhagat SD
    J Colloid Interface Sci; 2005 May; 285(1):413-8. PubMed ID: 15797440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absorption and desorption of organic liquids in elastic superhydrophobic silica aerogels.
    Venkateswara Rao A; Hegde ND; Hirashima H
    J Colloid Interface Sci; 2007 Jan; 305(1):124-32. PubMed ID: 17067617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of toxic organic compounds from water with hydrophobic silica aerogels.
    Standeker S; Novak Z; Knez Z
    J Colloid Interface Sci; 2007 Jun; 310(2):362-8. PubMed ID: 17350031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of BTEX vapours from waste gas streams using silica aerogels of different hydrophobicity.
    Standeker S; Novak Z; Knez Z
    J Hazard Mater; 2009 Jun; 165(1-3):1114-8. PubMed ID: 19095355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of MTMS based transparent superhydrophobic silica films by sol-gel method.
    Venkateswara Rao A; Latthe SS; Nadargi DY; Hirashima H; Ganesan V
    J Colloid Interface Sci; 2009 Apr; 332(2):484-90. PubMed ID: 19200554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transparent, hydrophobic composite aerogels with high mechanical strength and low high-temperature thermal conductivities.
    Wei TY; Lu SY; Chang YC
    J Phys Chem B; 2008 Sep; 112(38):11881-6. PubMed ID: 18729501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible organofunctional aerogels.
    Ehgartner CR; Grandl S; Feinle A; Hüsing N
    Dalton Trans; 2017 Jul; 46(27):8809-8817. PubMed ID: 28352868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition from transparent aerogels to hierarchically porous monoliths in polymethylsilsesquioxane sol-gel system.
    Kanamori K; Kodera Y; Hayase G; Nakanishi K; Hanada T
    J Colloid Interface Sci; 2011 May; 357(2):336-44. PubMed ID: 21377166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elastic behavior of methyltrimethoxysilane based aerogels reinforced with tri-isocyanate.
    Nguyen BC; Meador MA; Medoro A; Arendt V; Randall J; McCorkle L; Shonkwiler B
    ACS Appl Mater Interfaces; 2010 May; 2(5):1430-43. PubMed ID: 20426430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of different types of surfactants on the microstructure of methyltrimethoxysilane-derived silica aerogels: A combined experimental and computational approach.
    Vareda JP; Maximiano P; Cunha LP; Ferreira AF; Simões PN; Durães L
    J Colloid Interface Sci; 2018 Feb; 512():64-76. PubMed ID: 29054008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Performance Methylsilsesquioxane Aerogels: Hydrolysis Mechanisms and Maximizing Compression Properties.
    Zhang G; Li C; Wang Y; Lin L; Ostrikov KK
    Gels; 2023 Sep; 9(9):. PubMed ID: 37754401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation, microstructure and hydrogen sorption properties of nanoporous carbon aerogels under ambient drying.
    Tian HY; Buckley CE; Mulè S; Paskevicius M; Dhal BB
    Nanotechnology; 2008 Nov; 19(47):475605. PubMed ID: 21836280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the drying conditions on the microstructure of silica based xerogels and aerogels.
    Durães L; Ochoa M; Rocha N; Patrício R; Duarte N; Redondo V; Portugal A
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6828-34. PubMed ID: 22962830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerogels from unaltered bacterial cellulose: application of scCO2 drying for the preparation of shaped, ultra-lightweight cellulosic aerogels.
    Liebner F; Haimer E; Wendland M; Neouze MA; Schlufter K; Miethe P; Heinze T; Potthast A; Rosenau T
    Macromol Biosci; 2010 Apr; 10(4):349-52. PubMed ID: 20166232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Co-Precursor Approach Coupled with a Supercritical Modification Method for Constructing Highly Transparent and Superhydrophobic Polymethylsilsesquioxane Aerogels.
    Lei C; Li J; Sun C; Yang H; Xia T; Hu Z; Zhang Y
    Molecules; 2018 Mar; 23(4):. PubMed ID: 29601481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible, Strong, Multifunctional Graphene Oxide/Silica-Based Composite Aerogels via a Double-Cross-Linked Network Approach.
    Zheng Z; Zhao Y; Hu J; Wang H
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47854-47864. PubMed ID: 33045826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultralight Industrial Bamboo Residue-Derived Holocellulose Thermal Insulation Aerogels with Hydrophobic and Fire Resistant Properties.
    Huang H; Yu Y; Qing Y; Zhang X; Cui J; Wang H
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31963857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of supercritical CO2 in aerogels as studied by small-angle neutron scattering and neutron transmission techniques.
    Melnichenko YB; Wignall GD; Cole DR; Frielinghaus H
    J Chem Phys; 2006 May; 124(20):204711. PubMed ID: 16774368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new route for preparation of sodium-silicate-based hydrophobic silica aerogels via ambient-pressure drying.
    Bangi UK; Venkateswara Rao A; Parvathy Rao A
    Sci Technol Adv Mater; 2008 Jul; 9(3):035006. PubMed ID: 27878003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.