BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 16707178)

  • 1. The effect of viewing the moving limb and target object during the early phase of movement on the online control of grasping.
    Fukui T; Inui T
    Hum Mov Sci; 2006 Jun; 25(3):349-71. PubMed ID: 16707178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Older Adolescents and Young Adults With Autism Spectrum Disorder Have Difficulty Chaining Motor Acts When Performing Prehension Movements Compared to Typically Developing Peers.
    Fukui T; Sano M; Tanaka A; Suzuki M; Kim S; Agarie H; Fukatsu R; Nishimaki K; Nakajima Y; Wada M
    Front Hum Neurosci; 2018; 12():430. PubMed ID: 30405382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of aperture closure during reach-to-grasp movements in Parkinson's disease.
    Rand MK; Smiley-Oyen AL; Shimansky YP; Bloedel JR; Stelmach GE
    Exp Brain Res; 2006 Jan; 168(1-2):131-42. PubMed ID: 16307233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vision facilitates tactile perception when grasping an object.
    Juravle G; Colino FL; Meleqi X; Binsted G; Farnè A
    Sci Rep; 2018 Oct; 8(1):15653. PubMed ID: 30353083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the duration of reach-to-grasp movements to objects with asymmetric contact surfaces.
    Coats RO; Holt RJ; Bingham GP; Mon-Williams MA
    PLoS One; 2018; 13(2):e0193185. PubMed ID: 29470504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How do flanking objects affect reaching and grasping behavior in participants with macular disorders?
    Pardhan S; Gonzalez-Alvarez C; Subramanian A; Chung ST
    Invest Ophthalmol Vis Sci; 2012 Sep; 53(10):6687-94. PubMed ID: 22918639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intersegmental Coordination in the Kinematics of Prehension Movements of Macaques.
    Sartori L; Camperio-Ciani A; Bulgheroni M; Castiello U
    PLoS One; 2015; 10(7):e0132937. PubMed ID: 26176232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Secondary somatosensory and posterior insular cortices: a somatomotor hub for object prehension and manipulation movements.
    Ishida H; Grandi LC; Fornia L
    Front Integr Neurosci; 2024; 18():1346968. PubMed ID: 38725800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Turntable Setup for Testing Visual and Tactile Grasping Movements in Non-human Primates.
    Buchwald D; Schaffelhofer S; Dörge M; Dann B; Scherberger H
    Front Behav Neurosci; 2021; 15():648483. PubMed ID: 34113241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Faster but Less Careful Prehension in Presence of High, Rather than Low, Social Status Attendees.
    Fantoni C; Rigutti S; Piccoli V; Sommacal E; Carnaghi A
    PLoS One; 2016; 11(6):e0158095. PubMed ID: 27351978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid online correction of reach-to-manipulate movements in children with developmental coordination disorder: A pilot kinematic comparison study.
    Huang Q; Kuo LC; Fong KNK; Chien CW
    Clin Biomech (Bristol, Avon); 2024 Jan; 111():106154. PubMed ID: 38029478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Softness Perception of Visual Objects Controlled by Touchless Inputs: The Role of Effective Distance of Hand Movements.
    Kawabe T; Ujitoko Y
    IEEE Trans Vis Comput Graph; 2024 Jul; 30(7):4154-4169. PubMed ID: 37028284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of foreperiod duration on the preparation and control of sequential aiming movements.
    Khan MA; Kurniawan A; Khan ME; Khan MC; Smith KL; Scharoun Benson S; Carlsen AN; Lawrence GP
    Q J Exp Psychol (Hove); 2024 Feb; 77(2):242-256. PubMed ID: 36847427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Object Visibility, Not Energy Expenditure, Accounts For Spatial Biases in Human Grasp Selection.
    Maiello G; Paulun VC; Klein LK; Fleming RW
    Iperception; 2019; 10(1):2041669519827608. PubMed ID: 30828416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Neural Dynamic Architecture for Reaching and Grasping Integrates Perception and Movement Generation and Enables On-Line Updating.
    Knips G; Zibner SK; Reimann H; Schöner G
    Front Neurorobot; 2017; 11():9. PubMed ID: 28303100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of object size on spatial orientation: an eye movement study.
    Yang T; He Y; Wu L; Wang H; Wang X; Li Y; Guo Y; Wu S; Liu X
    Front Neurosci; 2023; 17():1197618. PubMed ID: 38027477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intuitive mapping between nonsymbolic quantity and observed action across development.
    de Hevia MD; Nava E
    J Exp Child Psychol; 2024 Jan; 237():105758. PubMed ID: 37579614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of sonification types in upper-limb movement: a quantitative and qualitative study in hemiparetic and healthy participants.
    Peyre I; Roby-Brami A; Segalen M; Giron A; Caramiaux B; Marchand-Pauvert V; Pradat-Diehl P; Bevilacqua F
    J Neuroeng Rehabil; 2023 Oct; 20(1):136. PubMed ID: 37798637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adapting to Altered Sensory Input: Effects of Induced Paresthesia on Goal-Directed Movement Planning and Execution.
    Mortaza N; Passmore SR; Glazebrook CM
    Brain Sci; 2023 Sep; 13(9):. PubMed ID: 37759942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Online Natural Myocontrol of Combined Hand and Wrist Actions Using Tactile Myography and the Biomechanics of Grasping.
    Connan M; Kõiva R; Castellini C
    Front Neurorobot; 2020; 14():11. PubMed ID: 32174821
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.