BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 16707274)

  • 21. Gene activation by interaction of an inhibitor with a cytoplasmic signaling protein.
    Peng G; Hopper JE
    Proc Natl Acad Sci U S A; 2002 Jun; 99(13):8548-53. PubMed ID: 12084916
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An improved system for estradiol-dependent regulation of gene expression in yeast.
    Quintero MJ; Maya D; Arévalo-Rodríguez M; Cebolla A; Chávez S
    Microb Cell Fact; 2007 Mar; 6():10. PubMed ID: 17374163
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative model for Gal4p-mediated expression of the galactose/melibiose regulon in Saccharomyces cerevisiae.
    Venkatesh KV; Bhat PJ; Kumar RA; Doshi P
    Biotechnol Prog; 1999; 15(1):51-7. PubMed ID: 9933513
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Construction and characterization of bidirectional expression vectors in Saccharomyces cerevisiae.
    Li A; Liu Z; Li Q; Yu L; Wang D; Deng X
    FEMS Yeast Res; 2008 Feb; 8(1):6-9. PubMed ID: 18031531
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inducible expression cassettes in yeast: GAL4.
    Mylin LM; Hopper JE
    Methods Mol Biol; 1997; 62():131-48. PubMed ID: 9108518
    [No Abstract]   [Full Text] [Related]  

  • 26. A set of vectors with a tetracycline-regulatable promoter system for modulated gene expression in Saccharomyces cerevisiae.
    Garí E; Piedrafita L; Aldea M; Herrero E
    Yeast; 1997 Jul; 13(9):837-48. PubMed ID: 9234672
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Positive Feedback Genetic Circuit Incorporating a Constitutively Active Mutant Gal3 into Yeast GAL Induction System.
    Ryo S; Ishii J; Matsuno T; Nakamura Y; Matsubara D; Tominaga M; Kondo A
    ACS Synth Biol; 2017 Jun; 6(6):928-935. PubMed ID: 28324652
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of chemical chaperones in the yeast Saccharomyces cerevisiae to enhance heterologous membrane protein expression: high-yield expression and purification of human P-glycoprotein.
    Figler RA; Omote H; Nakamoto RK; Al-Shawi MK
    Arch Biochem Biophys; 2000 Apr; 376(1):34-46. PubMed ID: 10729188
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope.
    Cabal GG; Genovesio A; Rodriguez-Navarro S; Zimmer C; Gadal O; Lesne A; Buc H; Feuerbach-Fournier F; Olivo-Marin JC; Hurt EC; Nehrbass U
    Nature; 2006 Jun; 441(7094):770-3. PubMed ID: 16760982
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Perturbation of the interaction between Gal4p and Gal80p of the Saccharomyces cerevisiae GAL switch results in altered responses to galactose and glucose.
    Das Adhikari AK; Qureshi MT; Kar RK; Bhat PJ
    Mol Microbiol; 2014 Oct; 94(1):202-17. PubMed ID: 25135592
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Production of antithrombotic hirudin in GAL1-disrupted Saccharomyces cerevisiae.
    Kim MD; Lee TH; Lim HK; Seo JH
    Appl Microbiol Biotechnol; 2004 Aug; 65(3):259-62. PubMed ID: 15048590
    [TBL] [Abstract][Full Text] [Related]  

  • 32. GAL4-NF-kappaB fusion protein augments transgene expression from neuronal promoters in the rat brain.
    Liu BH; Yang Y; Paton JF; Li F; Boulaire J; Kasparov S; Wang S
    Mol Ther; 2006 Dec; 14(6):872-82. PubMed ID: 16904943
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccharomyces cerevisiae.
    Johnston M; Flick JS; Pexton T
    Mol Cell Biol; 1994 Jun; 14(6):3834-41. PubMed ID: 8196626
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The mechanism by which overexpression of Gts1p induces flocculation in a FLO8-inactive strain of the yeast Saccharomyces cerevisiae.
    Shen H; Iha H; Yaguchi S; Tsurugi K
    FEMS Yeast Res; 2006 Sep; 6(6):914-23. PubMed ID: 16911513
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional expression of the maize mitochondrial URF13 down-regulates galactose-induced GAL1 gene expression in Saccharomyces cerevisiae.
    Ferreira Júnior JR; Ramos AS; Chambergo FS; Stambuk BU; Muschellack LK; Schumacher R; El-Dorry H
    Biochem Biophys Res Commun; 2006 Jan; 339(1):30-6. PubMed ID: 16297867
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The roles of galactitol, galactose-1-phosphate, and phosphoglucomutase in galactose-induced toxicity in Saccharomyces cerevisiae.
    de Jongh WA; Bro C; Ostergaard S; Regenberg B; Olsson L; Nielsen J
    Biotechnol Bioeng; 2008 Oct; 101(2):317-26. PubMed ID: 18421797
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bimodal expression of yeast GAL genes is controlled by a long non-coding RNA and a bifunctional galactokinase.
    Zacharioudakis I; Tzamarias D
    Biochem Biophys Res Commun; 2017 Apr; 486(1):63-69. PubMed ID: 28254434
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of Gal11, a component of the RNA polymerase II mediator in stress-induced hyperphosphorylation of Msn2 in Saccharomyces cerevisiae.
    Lallet S; Garreau H; Garmendia-Torres C; Szestakowska D; Boy-Marcotte E; Quevillon-Chéruel S; Jacquet M
    Mol Microbiol; 2006 Oct; 62(2):438-52. PubMed ID: 17020582
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression of hepatitis B surface antigen S domain in recombinant Saccharomyces cerevisiae using GAL1 promoter.
    Kim EJ; Park YK; Lim HK; Park YC; Seo JH
    J Biotechnol; 2009 May; 141(3-4):155-9. PubMed ID: 19433220
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Overexpression of the aldose reductase GRE3 suppresses lithium-induced galactose toxicity in Saccharomyces cerevisiae.
    Masuda CA; Previato JO; Miranda MN; Assis LJ; Penha LL; Mendonça-Previato L; Montero-Lomelí M
    FEMS Yeast Res; 2008 Dec; 8(8):1245-53. PubMed ID: 18811659
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.