These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
777 related articles for article (PubMed ID: 16707422)
1. Evolution of the androgen receptor pathway during progression of prostate cancer. Hendriksen PJ; Dits NF; Kokame K; Veldhoven A; van Weerden WM; Bangma CH; Trapman J; Jenster G Cancer Res; 2006 May; 66(10):5012-20. PubMed ID: 16707422 [TBL] [Abstract][Full Text] [Related]
2. Beta-2-microglobulin expression correlates with high-grade prostate cancer and specific defects in androgen signaling. Mink SR; Hodge A; Agus DB; Jain A; Gross ME Prostate; 2010 Aug; 70(11):1201-10. PubMed ID: 20564426 [TBL] [Abstract][Full Text] [Related]
3. Molecular regulation of androgen action in prostate cancer. Dehm SM; Tindall DJ J Cell Biochem; 2006 Oct; 99(2):333-44. PubMed ID: 16518832 [TBL] [Abstract][Full Text] [Related]
4. Valproic acid induces neuroendocrine differentiation and UGT2B7 up-regulation in human prostate carcinoma cell line. Valentini A; Biancolella M; Amati F; Gravina P; Miano R; Chillemi G; Farcomeni A; Bueno S; Vespasiani G; Desideri A; Federici G; Novelli G; Bernardini S Drug Metab Dispos; 2007 Jun; 35(6):968-72. PubMed ID: 17371798 [TBL] [Abstract][Full Text] [Related]
5. NE-10 neuroendocrine cancer promotes the LNCaP xenograft growth in castrated mice. Jin RJ; Wang Y; Masumori N; Ishii K; Tsukamoto T; Shappell SB; Hayward SW; Kasper S; Matusik RJ Cancer Res; 2004 Aug; 64(15):5489-95. PubMed ID: 15289359 [TBL] [Abstract][Full Text] [Related]
6. Androgen deprivation induces selective outgrowth of aggressive hormone-refractory prostate cancer clones expressing distinct cellular and molecular properties not present in parental androgen-dependent cancer cells. Tso CL; McBride WH; Sun J; Patel B; Tsui KH; Paik SH; Gitlitz B; Caliliw R; van Ophoven A; Wu L; deKernion J; Belldegrun A Cancer J; 2000; 6(4):220-33. PubMed ID: 11038142 [TBL] [Abstract][Full Text] [Related]
7. The insulin-like growth factor axis and prostate cancer: lessons from the transgenic adenocarcinoma of mouse prostate (TRAMP) model. Kaplan PJ; Mohan S; Cohen P; Foster BA; Greenberg NM Cancer Res; 1999 May; 59(9):2203-9. PubMed ID: 10232609 [TBL] [Abstract][Full Text] [Related]
8. Relaxin becomes upregulated during prostate cancer progression to androgen independence and is negatively regulated by androgens. Thompson VC; Morris TG; Cochrane DR; Cavanagh J; Wafa LA; Hamilton T; Wang S; Fazli L; Gleave ME; Nelson CC Prostate; 2006 Dec; 66(16):1698-709. PubMed ID: 16998820 [TBL] [Abstract][Full Text] [Related]
9. Androgen receptor-dependent regulation of Bcl-xL expression: Implication in prostate cancer progression. Sun A; Tang J; Hong Y; Song J; Terranova PF; Thrasher JB; Svojanovsky S; Wang HG; Li B Prostate; 2008 Mar; 68(4):453-61. PubMed ID: 18196538 [TBL] [Abstract][Full Text] [Related]
10. In vivo progression of LAPC-9 and LNCaP prostate cancer models to androgen independence is associated with increased expression of insulin-like growth factor I (IGF-I) and IGF-I receptor (IGF-IR). Nickerson T; Chang F; Lorimer D; Smeekens SP; Sawyers CL; Pollak M Cancer Res; 2001 Aug; 61(16):6276-80. PubMed ID: 11507082 [TBL] [Abstract][Full Text] [Related]
11. The TRPS1 transcription factor: androgenic regulation in prostate cancer and high expression in breast cancer. Chang GT; Jhamai M; van Weerden WM; Jenster G; Brinkmann AO Endocr Relat Cancer; 2004 Dec; 11(4):815-22. PubMed ID: 15613454 [TBL] [Abstract][Full Text] [Related]
12. Regulation of expression of Na+,K+-ATPase in androgen-dependent and androgen-independent prostate cancer. Blok LJ; Chang GT; Steenbeek-Slotboom M; van Weerden WM; Swarts HG; De Pont JJ; van Steenbrugge GJ; Brinkmann AO Br J Cancer; 1999 Sep; 81(1):28-36. PubMed ID: 10487609 [TBL] [Abstract][Full Text] [Related]
13. Dysregulated expression of androgen-responsive and nonresponsive genes in the androgen-independent prostate cancer xenograft model CWR22-R1. Amler LC; Agus DB; LeDuc C; Sapinoso ML; Fox WD; Kern S; Lee D; Wang V; Leysens M; Higgins B; Martin J; Gerald W; Dracopoli N; Cordon-Cardo C; Scher HI; Hampton GM Cancer Res; 2000 Nov; 60(21):6134-41. PubMed ID: 11085537 [TBL] [Abstract][Full Text] [Related]
14. Amyloid precursor protein is a primary androgen target gene that promotes prostate cancer growth. Takayama K; Tsutsumi S; Suzuki T; Horie-Inoue K; Ikeda K; Kaneshiro K; Fujimura T; Kumagai J; Urano T; Sakaki Y; Shirahige K; Sasano H; Takahashi S; Kitamura T; Ouchi Y; Aburatani H; Inoue S Cancer Res; 2009 Jan; 69(1):137-42. PubMed ID: 19117996 [TBL] [Abstract][Full Text] [Related]
15. Interleukin-17 receptor-like gene is a novel antiapoptotic gene highly expressed in androgen-independent prostate cancer. You Z; Shi XB; DuRaine G; Haudenschild D; Tepper CG; Lo SH; Gandour-Edwards R; de Vere White RW; Reddi AH Cancer Res; 2006 Jan; 66(1):175-83. PubMed ID: 16397230 [TBL] [Abstract][Full Text] [Related]
16. N-cadherin increases after androgen deprivation and is associated with metastasis in prostate cancer. Jennbacken K; Tesan T; Wang W; Gustavsson H; Damber JE; Welén K Endocr Relat Cancer; 2010 Jun; 17(2):469-79. PubMed ID: 20233707 [TBL] [Abstract][Full Text] [Related]
17. Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Linja MJ; Savinainen KJ; Saramäki OR; Tammela TL; Vessella RL; Visakorpi T Cancer Res; 2001 May; 61(9):3550-5. PubMed ID: 11325816 [TBL] [Abstract][Full Text] [Related]
18. Alterations in gene expression profiles during prostate cancer progression: functional correlations to tumorigenicity and down-regulation of selenoprotein-P in mouse and human tumors. Calvo A; Xiao N; Kang J; Best CJ; Leiva I; Emmert-Buck MR; Jorcyk C; Green JE Cancer Res; 2002 Sep; 62(18):5325-35. PubMed ID: 12235003 [TBL] [Abstract][Full Text] [Related]
19. Expression profiling of the mouse prostate after castration and hormone replacement: implication of H-cadherin in prostate tumorigenesis. Wang XD; Wang BE; Soriano R; Zha J; Zhang Z; Modrusan Z; Cunha GR; Gao WQ Differentiation; 2007 Mar; 75(3):219-34. PubMed ID: 17288544 [TBL] [Abstract][Full Text] [Related]
20. Identification of mu-crystallin as an androgen-regulated gene in human prostate cancer. Malinowska K; Cavarretta IT; Susani M; Wrulich OA; Uberall F; Kenner L; Culig Z Prostate; 2009 Jul; 69(10):1109-18. PubMed ID: 19353593 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]