BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 16707451)

  • 1. Regulation of microtubule-dependent protein transport by the TSC2/mammalian target of rapamycin pathway.
    Jiang X; Yeung RS
    Cancer Res; 2006 May; 66(10):5258-69. PubMed ID: 16707451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mTOR/S6K signalling pathway: the role of the TSC1/2 tumour suppressor complex and the proto-oncogene Rheb.
    Nobukini T; Thomas G
    Novartis Found Symp; 2004; 262():148-54; discussion 154-9, 265-8. PubMed ID: 15562827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuberous sclerosis: a GAP at the crossroads of multiple signaling pathways.
    Kwiatkowski DJ; Manning BD
    Hum Mol Genet; 2005 Oct; 14 Spec No. 2():R251-8. PubMed ID: 16244323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective inhibition of growth of tuberous sclerosis complex 2 null cells by atorvastatin is associated with impaired Rheb and Rho GTPase function and reduced mTOR/S6 kinase activity.
    Finlay GA; Malhowski AJ; Liu Y; Fanburg BL; Kwiatkowski DJ; Toksoz D
    Cancer Res; 2007 Oct; 67(20):9878-86. PubMed ID: 17942919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutations in the PI3K/PTEN/TSC2 pathway contribute to mammalian target of rapamycin activity and increased translation under hypoxic conditions.
    Kaper F; Dornhoefer N; Giaccia AJ
    Cancer Res; 2006 Feb; 66(3):1561-9. PubMed ID: 16452213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurements of TSC2 GAP activity toward Rheb.
    Li Y; Inoki K; Vikis H; Guan KL
    Methods Enzymol; 2006; 407():46-54. PubMed ID: 16757313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of Tsc1 or Tsc2 induces vascular endothelial growth factor production through mammalian target of rapamycin.
    El-Hashemite N; Walker V; Zhang H; Kwiatkowski DJ
    Cancer Res; 2003 Sep; 63(17):5173-7. PubMed ID: 14500340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Platelet-derived growth factor-induced p42/44 mitogen-activated protein kinase activation and cellular growth is mediated by reactive oxygen species in the absence of TSC2/tuberin.
    Finlay GA; Thannickal VJ; Fanburg BL; Kwiatkowski DJ
    Cancer Res; 2005 Dec; 65(23):10881-90. PubMed ID: 16322235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuberin is a component of lipid rafts and mediates caveolin-1 localization: role of TSC2 in post-Golgi transport.
    Jones KA; Jiang X; Yamamoto Y; Yeung RS
    Exp Cell Res; 2004 May; 295(2):512-24. PubMed ID: 15093748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of S664 TSC2 phosphorylation as a marker for extracellular signal-regulated kinase mediated mTOR activation in tuberous sclerosis and human cancer.
    Ma L; Teruya-Feldstein J; Bonner P; Bernardi R; Franz DN; Witte D; Cordon-Cardo C; Pandolfi PP
    Cancer Res; 2007 Aug; 67(15):7106-12. PubMed ID: 17671177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Essential role of tuberous sclerosis genes TSC1 and TSC2 in NF-kappaB activation and cell survival.
    Ghosh S; Tergaonkar V; Rothlin CV; Correa RG; Bottero V; Bist P; Verma IM; Hunter T
    Cancer Cell; 2006 Sep; 10(3):215-26. PubMed ID: 16959613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of mTOR signaling by the small G-proteins, Rheb and RhebL1.
    Tee AR; Blenis J; Proud CG
    FEBS Lett; 2005 Aug; 579(21):4763-8. PubMed ID: 16098514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation and binding partner analysis of the TSC1-TSC2 complex.
    Nellist M; Burgers PC; van den Ouweland AM; Halley DJ; Luider TM
    Biochem Biophys Res Commun; 2005 Aug; 333(3):818-26. PubMed ID: 15963462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TOR signaling.
    Harris TE; Lawrence JC
    Sci STKE; 2003 Dec; 2003(212):re15. PubMed ID: 14668532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Akt-dependent proapoptotic effects of dietary restriction on late-stage management of a phosphatase and tensin homologue/tuberous sclerosis complex 2-deficient mouse astrocytoma.
    Marsh J; Mukherjee P; Seyfried TN
    Clin Cancer Res; 2008 Dec; 14(23):7751-62. PubMed ID: 19047102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rheb activation of mTOR and S6K1 signaling.
    Hanrahan J; Blenis J
    Methods Enzymol; 2006; 407():542-55. PubMed ID: 16757352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insulin and amino-acid regulation of mTOR signaling and kinase activity through the Rheb GTPase.
    Avruch J; Hara K; Lin Y; Liu M; Long X; Ortiz-Vega S; Yonezawa K
    Oncogene; 2006 Oct; 25(48):6361-72. PubMed ID: 17041622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Caveolin regulates microtubule polymerization in the vascular smooth muscle cells.
    Kawabe J; Okumura S; Nathanson MA; Hasebe N; Ishikawa Y
    Biochem Biophys Res Commun; 2006 Mar; 342(1):164-9. PubMed ID: 16480946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Therapeutic targeting of mTOR in tuberous sclerosis.
    Sampson JR
    Biochem Soc Trans; 2009 Feb; 37(Pt 1):259-64. PubMed ID: 19143643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ubiquitin-dependent proteolysis of the microtubule end-binding protein 1, EB1, is controlled by the COP9 signalosome: possible consequences for microtubule filament stability.
    Peth A; Boettcher JP; Dubiel W
    J Mol Biol; 2007 Apr; 368(2):550-63. PubMed ID: 17350042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.