These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 16707582)

  • 1. Circadian rhythms in gene transcription imparted by chromosome compaction in the cyanobacterium Synechococcus elongatus.
    Smith RM; Williams SB
    Proc Natl Acad Sci U S A; 2006 May; 103(22):8564-9. PubMed ID: 16707582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A circadian timing mechanism in the cyanobacteria.
    Williams SB
    Adv Microb Physiol; 2007; 52():229-96. PubMed ID: 17027373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. labA: a novel gene required for negative feedback regulation of the cyanobacterial circadian clock protein KaiC.
    Taniguchi Y; Katayama M; Ito R; Takai N; Kondo T; Oyama T
    Genes Dev; 2007 Jan; 21(1):60-70. PubMed ID: 17210789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mathematical model for the Kai-protein-based chemical oscillator and clock gene expression rhythms in cyanobacteria.
    Miyoshi F; Nakayama Y; Kaizu K; Iwasaki H; Tomita M
    J Biol Rhythms; 2007 Feb; 22(1):69-80. PubMed ID: 17229926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability of the Synechococcus elongatus PCC 7942 circadian clock under directed anti-phase expression of the kai genes.
    Ditty JL; Canales SR; Anderson BE; Williams SB; Golden SS
    Microbiology (Reading); 2005 Aug; 151(Pt 8):2605-2613. PubMed ID: 16079339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A kaiC-interacting sensory histidine kinase, SasA, necessary to sustain robust circadian oscillation in cyanobacteria.
    Iwasaki H; Williams SB; Kitayama Y; Ishiura M; Golden SS; Kondo T
    Cell; 2000 Apr; 101(2):223-33. PubMed ID: 10786837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of circadian clock gene expression by phosphorylation states of KaiC in cyanobacteria.
    Murayama Y; Oyama T; Kondo T
    J Bacteriol; 2008 Mar; 190(5):1691-8. PubMed ID: 18165308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression of lalA, a paralog of labA, is capable of affecting both circadian gene expression and cell growth in the cyanobacterium Synechococcus elongatus PCC 7942.
    Taniguchi Y; Nishikawa T; Kondo T; Oyama T
    FEBS Lett; 2012 Mar; 586(6):753-9. PubMed ID: 22289183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How a cyanobacterium tells time.
    Dong G; Golden SS
    Curr Opin Microbiol; 2008 Dec; 11(6):541-6. PubMed ID: 18983934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A KaiC-associating SasA-RpaA two-component regulatory system as a major circadian timing mediator in cyanobacteria.
    Takai N; Nakajima M; Oyama T; Kito R; Sugita C; Sugita M; Kondo T; Iwasaki H
    Proc Natl Acad Sci U S A; 2006 Aug; 103(32):12109-14. PubMed ID: 16882723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Kai-Protein Clock-Keeping Track of Cyanobacteria's Daily Life.
    Snijder J; Axmann IM
    Subcell Biochem; 2019; 93():359-391. PubMed ID: 31939158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A cyanobacterial circadian clock based on the Kai oscillator.
    Kondo T
    Cold Spring Harb Symp Quant Biol; 2007; 72():47-55. PubMed ID: 18419262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. No transcription-translation feedback in circadian rhythm of KaiC phosphorylation.
    Tomita J; Nakajima M; Kondo T; Iwasaki H
    Science; 2005 Jan; 307(5707):251-4. PubMed ID: 15550625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circadian formation of clock protein complexes by KaiA, KaiB, KaiC, and SasA in cyanobacteria.
    Kageyama H; Kondo T; Iwasaki H
    J Biol Chem; 2003 Jan; 278(4):2388-95. PubMed ID: 12441347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical analysis of three putative KaiC clock proteins from Synechocystis sp. PCC 6803 suggests their functional divergence.
    Wiegard A; Dörrich AK; Deinzer HT; Beck C; Wilde A; Holtzendorff J; Axmann IM
    Microbiology (Reading); 2013 May; 159(Pt 5):948-958. PubMed ID: 23449916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstitution of an intact clock reveals mechanisms of circadian timekeeping.
    Chavan AG; Swan JA; Heisler J; Sancar C; Ernst DC; Fang M; Palacios JG; Spangler RK; Bagshaw CR; Tripathi S; Crosby P; Golden SS; Partch CL; LiWang A
    Science; 2021 Oct; 374(6564):eabd4453. PubMed ID: 34618577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Combined Computational and Genetic Approach Uncovers Network Interactions of the Cyanobacterial Circadian Clock.
    Boyd JS; Cheng RR; Paddock ML; Sancar C; Morcos F; Golden SS
    J Bacteriol; 2016 Sep; 198(18):2439-47. PubMed ID: 27381914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two antagonistic clock-regulated histidine kinases time the activation of circadian gene expression.
    Gutu A; O'Shea EK
    Mol Cell; 2013 Apr; 50(2):288-94. PubMed ID: 23541768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circadian transcriptional regulation by the posttranslational oscillator without de novo clock gene expression in Synechococcus.
    Hosokawa N; Hatakeyama TS; Kojima T; Kikuchi Y; Ito H; Iwasaki H
    Proc Natl Acad Sci U S A; 2011 Sep; 108(37):15396-401. PubMed ID: 21896749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined SAXS/EM based models of the S. elongatus post-translational circadian oscillator and its interactions with the output His-kinase SasA.
    Pattanayek R; Williams DR; Rossi G; Weigand S; Mori T; Johnson CH; Stewart PL; Egli M
    PLoS One; 2011; 6(8):e23697. PubMed ID: 21887298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.