These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 16707788)

  • 1. Role of dopamine in the primate caudate nucleus in reward modulation of saccades.
    Nakamura K; Hikosaka O
    J Neurosci; 2006 May; 26(20):5360-9. PubMed ID: 16707788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of dopamine and its antagonists on directional delay-period activity of prefrontal neurons in monkeys during an oculomotor delayed-response task.
    Sawaguchi T
    Neurosci Res; 2001 Oct; 41(2):115-28. PubMed ID: 11591439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Basal ganglia mechanisms of reward-oriented eye movement.
    Hikosaka O
    Ann N Y Acad Sci; 2007 May; 1104():229-49. PubMed ID: 17360800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural correlates of rewarded and unrewarded eye movements in the primate caudate nucleus.
    Watanabe K; Lauwereyns J; Hikosaka O
    J Neurosci; 2003 Nov; 23(31):10052-7. PubMed ID: 14602819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eye movements in monkeys with local dopamine depletion in the caudate nucleus. I. Deficits in spontaneous saccades.
    Kato M; Miyashita N; Hikosaka O; Matsumura M; Usui S; Kori A
    J Neurosci; 1995 Jan; 15(1 Pt 2):912-27. PubMed ID: 7823189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. D1 and D2 specific dopamine antagonist modulate the caudate nucleus neuronal responses to chronic methylphenidate exposure.
    Venkataraman S; Claussen C; Dafny N
    J Neural Transm (Vienna); 2017 Feb; 124(2):159-170. PubMed ID: 27853928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intact discrimination reversal learning but slowed responding to reward-predictive cues after dopamine D1 and D2 receptor blockade in the nucleus accumbens of rats.
    Calaminus C; Hauber W
    Psychopharmacology (Berl); 2007 Apr; 191(3):551-66. PubMed ID: 17021925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of risk/reward decision making by dopaminergic transmission within the basolateral amygdala.
    Larkin JD; Jenni NL; Floresco SB
    Psychopharmacology (Berl); 2016 Jan; 233(1):121-36. PubMed ID: 26432096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dopaminergic modulation of neuronal activity in the monkey putamen through D1 and D2 receptors during a delayed Go/Nogo task.
    Inase M; Li BM; Tanji J
    Exp Brain Res; 1997 Nov; 117(2):207-18. PubMed ID: 9419068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation of primate caudate neural activity and saccade parameters in reward-oriented behavior.
    Itoh H; Nakahara H; Hikosaka O; Kawagoe R; Takikawa Y; Aihara K
    J Neurophysiol; 2003 Apr; 89(4):1774-83. PubMed ID: 12686566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-methyl-D-aspartate receptor blockade impairs behavioural performance of rats in a reaction time task: new evidence for glutamatergic-dopaminergic interactions in the striatum.
    Baunez C; Nieoullon A; Amalric M
    Neuroscience; 1994 Aug; 61(3):521-31. PubMed ID: 7969928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissociable dopaminergic control of saccadic target selection and its implications for reward modulation.
    Soltani A; Noudoost B; Moore T
    Proc Natl Acad Sci U S A; 2013 Feb; 110(9):3579-84. PubMed ID: 23401524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eye movements in monkeys with local dopamine depletion in the caudate nucleus. II. Deficits in voluntary saccades.
    Kori A; Miyashita N; Kato M; Hikosaka O; Usui S; Matsumura M
    J Neurosci; 1995 Jan; 15(1 Pt 2):928-41. PubMed ID: 7823190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dopamine activity in the nucleus accumbens modulates blocking in fear conditioning.
    Iordanova MD; Westbrook RF; Killcross AS
    Eur J Neurosci; 2006 Dec; 24(11):3265-70. PubMed ID: 17156387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interleukin-2-induced increases in climbing behavior: inhibition by dopamine D-1 and D-2 receptor antagonists.
    Zalcman SS
    Brain Res; 2002 Jul; 944(1-2):157-64. PubMed ID: 12106675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dopamine D2 receptors are present in prefrontal cortical afferents and their targets in patches of the rat caudate-putamen nucleus.
    Wang H; Pickel VM
    J Comp Neurol; 2002 Jan; 442(4):392-404. PubMed ID: 11793342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primate Nigrostriatal Dopamine System Regulates Saccadic Response Inhibition.
    Ogasawara T; Nejime M; Takada M; Matsumoto M
    Neuron; 2018 Dec; 100(6):1513-1526.e4. PubMed ID: 30415993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dopaminergic activities in the human striatum: rostrocaudal gradients of uptake sites and of D1 and D2 but not of D3 receptor binding or dopamine.
    Piggott MA; Marshall EF; Thomas N; Lloyd S; Court JA; Jaros E; Costa D; Perry RH; Perry EK
    Neuroscience; 1999 May; 90(2):433-45. PubMed ID: 10215149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reward-predicting activity of dopamine and caudate neurons--a possible mechanism of motivational control of saccadic eye movement.
    Kawagoe R; Takikawa Y; Hikosaka O
    J Neurophysiol; 2004 Feb; 91(2):1013-24. PubMed ID: 14523067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facilitation of saccadic eye movements by postsaccadic electrical stimulation in the primate caudate.
    Nakamura K; Hikosaka O
    J Neurosci; 2006 Dec; 26(50):12885-95. PubMed ID: 17167079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.