These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 16708470)
1. Growth, anisotropy, and residual stresses in arteries. Volokh KY; Lev Y Mech Chem Biosyst; 2005; 2(1):27-40. PubMed ID: 16708470 [TBL] [Abstract][Full Text] [Related]
2. On Eulerian constitutive equations for modeling growth and residual stresses in arteries. Volokh KY Mech Chem Biosyst; 2005 Jun; 2(2):77-86. PubMed ID: 16783929 [TBL] [Abstract][Full Text] [Related]
3. Stresses in growing soft tissues. Volokh KY Acta Biomater; 2006 Sep; 2(5):493-504. PubMed ID: 16793355 [TBL] [Abstract][Full Text] [Related]
4. Assessing the use of the "opening angle method" to enforce residual stresses in patient-specific arteries. Alastrué V; Peña E; Martínez MA; Doblaré M Ann Biomed Eng; 2007 Oct; 35(10):1821-37. PubMed ID: 17638082 [TBL] [Abstract][Full Text] [Related]
5. A description of arterial wall mechanics using limiting chain extensibility constitutive models. Horgan CO; Saccomandi G Biomech Model Mechanobiol; 2003 Apr; 1(4):251-66. PubMed ID: 14586694 [TBL] [Abstract][Full Text] [Related]
6. Stress-driven collagen fiber remodeling in arterial walls. Hariton I; de Botton G; Gasser TC; Holzapfel GA Biomech Model Mechanobiol; 2007 Apr; 6(3):163-75. PubMed ID: 16912884 [TBL] [Abstract][Full Text] [Related]
7. The effect of longitudinal pre-stretch and radial constraint on the stress distribution in the vessel wall: a new hypothesis. Zhang W; Herrera C; Atluri SN; Kassab GS Mech Chem Biosyst; 2005; 2(1):41-52. PubMed ID: 16708471 [TBL] [Abstract][Full Text] [Related]
8. Complex distributions of residual stress and strain in the mouse left ventricle: experimental and theoretical models. Omens JH; McCulloch AD; Criscione JC Biomech Model Mechanobiol; 2003 Apr; 1(4):267-77. PubMed ID: 14586695 [TBL] [Abstract][Full Text] [Related]
12. Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy. Rodríguez JF; Ruiz C; Doblaré M; Holzapfel GA J Biomech Eng; 2008 Apr; 130(2):021023. PubMed ID: 18412510 [TBL] [Abstract][Full Text] [Related]
13. Investigation of 3-D mechanical properties of blood vessels using a new in vitro tests system: results on sheep common carotid arteries. Blondel WC; Didelon J; Maurice G; Carteaux JP; Wang X; Stoltz JF IEEE Trans Biomed Eng; 2001 Apr; 48(4):442-51. PubMed ID: 11322532 [TBL] [Abstract][Full Text] [Related]
14. The mechanical buckling of curved arteries. Han HC Mol Cell Biomech; 2009 Jun; 6(2):93-9. PubMed ID: 19496257 [TBL] [Abstract][Full Text] [Related]
16. A volumetric model for growth of arterial walls with arbitrary geometry and loads. Rodríguez J; Goicolea JM; Gabaldón F J Biomech; 2007; 40(5):961-71. PubMed ID: 16797020 [TBL] [Abstract][Full Text] [Related]
17. Anisotropic and hyperelastic identification of in vitro human arteries from full-field optical measurements. Avril S; Badel P; Duprey A J Biomech; 2010 Nov; 43(15):2978-85. PubMed ID: 20673669 [TBL] [Abstract][Full Text] [Related]
19. Fractional-order viscoelasticity applied to describe uniaxial stress relaxation of human arteries. Craiem D; Rojo FJ; Atienza JM; Armentano RL; Guinea GV Phys Med Biol; 2008 Sep; 53(17):4543-54. PubMed ID: 18677037 [TBL] [Abstract][Full Text] [Related]
20. Towards in vivo aorta material identification and stress estimation. Stålhand J; Klarbring A; Karlsson M Biomech Model Mechanobiol; 2004 Mar; 2(3):169-86. PubMed ID: 14767677 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]