These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 16709109)

  • 1. Converged vibrational energy levels and quantum mechanical vibrational partition function of ethane.
    Chakraborty A; Truhlar DG
    J Chem Phys; 2006 May; 124(18):184310. PubMed ID: 16709109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculation of converged rovibrational energies and partition function for methane using vibrational-rotational configuration interaction.
    Chakraborty A; Truhlar DG; Bowman JM; Carter S
    J Chem Phys; 2004 Aug; 121(5):2071-84. PubMed ID: 15260761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum mechanical single molecule partition function from path integral Monte Carlo simulations.
    Chempath S; Predescu C; Bell AT
    J Chem Phys; 2006 Jun; 124(23):234101. PubMed ID: 16821901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-precision quantum thermochemistry on nonquasiharmonic potentials: converged path-integral free energies and a systematically convergent family of generalized Pitzer-Gwinn approximations.
    Lynch VA; Mielke SL; Truhlar DG
    J Phys Chem A; 2005 Nov; 109(44):10092-9. PubMed ID: 16838929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of solution-phase vibrational frequencies in continuum models for the free energy of solvation.
    Ribeiro RF; Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2011 Dec; 115(49):14556-62. PubMed ID: 21875126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classical and quantum gibbs free energies and phase behavior of water using simulation and cell theory.
    Klefas-Stennett M; Henchman RH
    J Phys Chem B; 2008 Aug; 112(32):9769-76. PubMed ID: 18637683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free energy of liquid water from a computer simulation via cell theory.
    Henchman RH
    J Chem Phys; 2007 Feb; 126(6):064504. PubMed ID: 17313226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interpreting nonlinear vibrational spectroscopy with the classical mechanical analogs of double-sided Feynman diagrams.
    Noid WG; Loring RF
    J Chem Phys; 2004 Oct; 121(15):7057-69. PubMed ID: 15473771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semiclassical initial value series representation in the continuum limit: application to vibrational relaxation.
    Moix JM; Pollak E
    J Chem Phys; 2008 Aug; 129(6):064515. PubMed ID: 18715093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Line intensities of upsilon2 perpendicular band and the change of intensities with temperature for H12C14N].
    Song XS; Cheng XL; Yang XD; Li DH; Ge SH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Apr; 28(4):726-30. PubMed ID: 18619284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved methods for Feynman path integral calculations of vibrational-rotational free energies and application to isotopic fractionation of hydrated chloride ions.
    Mielke SL; Truhlar DG
    J Phys Chem A; 2009 Apr; 113(16):4817-27. PubMed ID: 19290606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved methods for Feynman path integral calculations and their application to calculate converged vibrational-rotational partition functions, free energies, enthalpies, entropies, and heat capacities for methane.
    Mielke SL; Truhlar DG
    J Chem Phys; 2015 Jan; 142(4):044105. PubMed ID: 25637967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A thermal self-consistent field theory for the calculation of molecular vibrational partition functions.
    Roy TK; Prasad MD
    J Chem Phys; 2009 Sep; 131(11):114102. PubMed ID: 19778095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the energy of the water exchange reaction and free energy of solvation for the uranyl ion in aqueous solution.
    Gutowski KE; Dixon DA
    J Phys Chem A; 2006 Jul; 110(28):8840-56. PubMed ID: 16836448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Path integral evaluation of equilibrium isotope effects.
    Zimmermann T; VanĂ­cek J
    J Chem Phys; 2009 Jul; 131(2):024111. PubMed ID: 19603974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical study of O2-H2O: potential energy surface, molecular vibrations, and equilibrium constant at atmospheric temperatures.
    Sabu A; Kondo S; Saito R; Kasai Y; Hashimoto K
    J Phys Chem A; 2005 Mar; 109(9):1836-42. PubMed ID: 16833514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-resonant energy transfer from highly vibrationally excited OH to N2.
    Burtt KD; Sharma RD
    J Chem Phys; 2008 Mar; 128(12):124311. PubMed ID: 18376923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of the hydration of carbon dioxide: direct participation of H2O versus microsolvation.
    Nguyen MT; Matus MH; Jackson VE; Vu TN; Rustad JR; Dixon DA
    J Phys Chem A; 2008 Oct; 112(41):10386-98. PubMed ID: 18816037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton.
    Kelly CP; Cramer CJ; Truhlar DG
    J Phys Chem B; 2006 Aug; 110(32):16066-81. PubMed ID: 16898764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quasilinear molecule par excellence, SrCl2: structure from high-temperature gas-phase electron diffraction and quantum-chemical calculations--computed structures of SrCl2.argon complexes.
    Varga Z; Lanza G; Minichino C; Hargittai M
    Chemistry; 2006 Nov; 12(32):8345-57. PubMed ID: 16900543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.