These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 16709161)

  • 41. The lateral compartmentation of the yeast plasma membrane.
    Malinsky J; Opekarová M; Tanner W
    Yeast; 2010 Aug; 27(8):473-8. PubMed ID: 20641012
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Insights into the mechanisms of sterol transport between organelles.
    Mesmin B; Antonny B; Drin G
    Cell Mol Life Sci; 2013 Sep; 70(18):3405-21. PubMed ID: 23283302
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae.
    Daum G; Lees ND; Bard M; Dickson R
    Yeast; 1998 Dec; 14(16):1471-510. PubMed ID: 9885152
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transcriptional profiling identifies two members of the ATP-binding cassette transporter superfamily required for sterol uptake in yeast.
    Wilcox LJ; Balderes DA; Wharton B; Tinkelenberg AH; Rao G; Sturley SL
    J Biol Chem; 2002 Sep; 277(36):32466-72. PubMed ID: 12077145
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multiple lipid transport pathways to the plasma membrane in yeast.
    Schnabl M; Daum G; Pichler H
    Biochim Biophys Acta; 2005 Feb; 1687(1-3):130-40. PubMed ID: 15708361
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Intracellular sterol transport and distribution.
    Maxfield FR; Menon AK
    Curr Opin Cell Biol; 2006 Aug; 18(4):379-85. PubMed ID: 16806879
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Macromolecular assemblies regulate nonvesicular phosphatidylserine traffic in yeast.
    Choi JY; Riekhof WR; Wu WI; Voelker DR
    Biochem Soc Trans; 2006 Jun; 34(Pt 3):404-8. PubMed ID: 16709173
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Involvement of heme components in sterol metabolism of Saccharomyces cerevisiae.
    Lorenz RT; Parks LW
    Lipids; 1991 Aug; 26(8):598-603. PubMed ID: 1779707
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Implications of sterol structure for membrane lipid composition, fluidity and phospholipid asymmetry in Saccharomyces cerevisiae.
    Sharma SC
    FEMS Yeast Res; 2006 Nov; 6(7):1047-51. PubMed ID: 17042754
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cytoplasmic oxysterol-binding proteins: sterol sensors or transporters?
    Vihervaara T; Jansen M; Uronen RL; Ohsaki Y; Ikonen E; Olkkonen VM
    Chem Phys Lipids; 2011 Sep; 164(6):443-50. PubMed ID: 21419754
    [TBL] [Abstract][Full Text] [Related]  

  • 51. How cholesterol interacts with proteins and lipids during its intracellular transport.
    Wüstner D; Solanko K
    Biochim Biophys Acta; 2015 Sep; 1848(9):1908-26. PubMed ID: 26004840
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sterol binding and membrane lipid attachment to the Osh4 protein of yeast.
    Rogaski B; Lim JB; Klauda JB
    J Phys Chem B; 2010 Oct; 114(42):13562-73. PubMed ID: 20925360
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Plasma membrane sterols are involved in yeast's ability to adsorb polyphenolic compounds resulting from wine model solution browning.
    Márquez T; Millán C; Salmon JM
    J Agric Food Chem; 2009 Sep; 57(17):8026-32. PubMed ID: 19691282
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The diverse functions of oxysterol-binding proteins.
    Raychaudhuri S; Prinz WA
    Annu Rev Cell Dev Biol; 2010; 26():157-77. PubMed ID: 19575662
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular basis for sterol transport by StART-like lipid transfer domains.
    Horenkamp FA; Valverde DP; Nunnari J; Reinisch KM
    EMBO J; 2018 Mar; 37(6):. PubMed ID: 29467216
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization by gas chromatography/mass spectrometry of sterols in saccharomyces cerevisiae during autolysis.
    Le Fur Y; Maume G; Feuillat M; Maume BF
    J Agric Food Chem; 1999 Jul; 47(7):2860-4. PubMed ID: 10552576
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Increased sterol formation in Saccharomyces cerevisiae. Analysis of cell components and ultrastructure of vacuoles.
    Bĕhalová B; Vorísek J
    Folia Microbiol (Praha); 1988; 33(4):292-7. PubMed ID: 3053366
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The plasma membrane of Saccharomyces cerevisiae: structure, function, and biogenesis.
    van der Rest ME; Kamminga AH; Nakano A; Anraku Y; Poolman B; Konings WN
    Microbiol Rev; 1995 Jun; 59(2):304-22. PubMed ID: 7603412
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Ligand-Binding Assay to Measure the Affinity and Specificity of Sterol-Binding Proteins In Vitro.
    Darwiche R; Schneiter R
    Methods Mol Biol; 2017; 1645():361-368. PubMed ID: 28710641
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of Sterols on the Interaction of SDS, Benzalkonium Chloride, and A Novel Compound, Kor105, with Membranes.
    Jiménez-Munguía I; Volynsky PE; Batishchev OV; Akimov SA; Korshunova GA; Smirnova EA; Knorre DA; Sokolov SS; Severin FF
    Biomolecules; 2019 Oct; 9(10):. PubMed ID: 31635312
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.