These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
45. Comparative studies on the Arabidopsis aldehyde oxidase (AAO) gene family revealed a major role of AAO3 in ABA biosynthesis in seeds. Seo M; Aoki H; Koiwai H; Kamiya Y; Nambara E; Koshiba T Plant Cell Physiol; 2004 Nov; 45(11):1694-703. PubMed ID: 15574845 [TBL] [Abstract][Full Text] [Related]
46. First off the mark: early seed germination. Weitbrecht K; Müller K; Leubner-Metzger G J Exp Bot; 2011 Jun; 62(10):3289-309. PubMed ID: 21430292 [TBL] [Abstract][Full Text] [Related]
47. Transcriptome profiling uncovers metabolic and regulatory processes occurring during the transition from desiccation-sensitive to desiccation-tolerant stages in Medicago truncatula seeds. Buitink J; Leger JJ; Guisle I; Vu BL; Wuillème S; Lamirault G; Le Bars A; Le Meur N; Becker A; Küster H; Leprince O Plant J; 2006 Sep; 47(5):735-50. PubMed ID: 16923015 [TBL] [Abstract][Full Text] [Related]
48. Indirect ABA-dependent regulation of seed storage protein genes by FUSCA3 transcription factor in Arabidopsis. Kagaya Y; Okuda R; Ban A; Toyoshima R; Tsutsumida K; Usui H; Yamamoto A; Hattori T Plant Cell Physiol; 2005 Feb; 46(2):300-11. PubMed ID: 15695463 [TBL] [Abstract][Full Text] [Related]
49. Transcriptional responses of Arabidopsis thaliana ecotypes with different glucosinolate profiles after attack by polyphagous Myzus persicae and oligophagous Brevicoryne brassicae. Kusnierczyk A; Winge P; Midelfart H; Armbruster WS; Rossiter JT; Bones AM J Exp Bot; 2007; 58(10):2537-52. PubMed ID: 17545220 [TBL] [Abstract][Full Text] [Related]
50. Seed after-ripening is a discrete developmental pathway associated with specific gene networks in Arabidopsis. Carrera E; Holman T; Medhurst A; Dietrich D; Footitt S; Theodoulou FL; Holdsworth MJ Plant J; 2008 Jan; 53(2):214-24. PubMed ID: 18028281 [TBL] [Abstract][Full Text] [Related]
51. Functional-genomics-based identification of genes that regulate Arabidopsis responses to multiple abiotic stresses. Kant P; Gordon M; Kant S; Zolla G; Davydov O; Heimer YM; Chalifa-Caspi V; Shaked R; Barak S Plant Cell Environ; 2008 Jun; 31(6):697-714. PubMed ID: 18182014 [TBL] [Abstract][Full Text] [Related]
52. Water content: a key factor of the induction of secondary dormancy in barley grains as related to ABA metabolism. Hoang HH; Sotta B; Gendreau E; Bailly C; Leymarie J; Corbineau F Physiol Plant; 2013 Jun; 148(2):284-96. PubMed ID: 23061651 [TBL] [Abstract][Full Text] [Related]
53. A nuclear gene for the iron-sulfur subunit of mitochondrial complex II is specifically expressed during Arabidopsis seed development and germination. Elorza A; Roschzttardtz H; Gómez I; Mouras A; Holuigue L; Araya A; Jordana X Plant Cell Physiol; 2006 Jan; 47(1):14-21. PubMed ID: 16249327 [TBL] [Abstract][Full Text] [Related]
54. Analysis of ABA hypersensitive germination2 revealed the pivotal functions of PARN in stress response in Arabidopsis. Nishimura N; Kitahata N; Seki M; Narusaka Y; Narusaka M; Kuromori T; Asami T; Shinozaki K; Hirayama T Plant J; 2005 Dec; 44(6):972-84. PubMed ID: 16359390 [TBL] [Abstract][Full Text] [Related]
55. A zinc finger-containing glycine-rich RNA-binding protein, atRZ-1a, has a negative impact on seed germination and seedling growth of Arabidopsis thaliana under salt or drought stress conditions. Kim YO; Pan S; Jung CH; Kang H Plant Cell Physiol; 2007 Aug; 48(8):1170-81. PubMed ID: 17602187 [TBL] [Abstract][Full Text] [Related]
56. Abscisic acid-induced modulation of metabolic and redox control pathways in Arabidopsis thaliana. Ghassemian M; Lutes J; Chang HS; Lange I; Chen W; Zhu T; Wang X; Lange BM Phytochemistry; 2008 Dec; 69(17):2899-911. PubMed ID: 19007950 [TBL] [Abstract][Full Text] [Related]
57. Loss of Arabidopsis thaliana Seed Dormancy is Associated with Increased Accumulation of the GID1 GA Hormone Receptors. Hauvermale AL; Tuttle KM; Takebayashi Y; Seo M; Steber CM Plant Cell Physiol; 2015 Sep; 56(9):1773-85. PubMed ID: 26136598 [TBL] [Abstract][Full Text] [Related]
58. Storage behavior and changes in concentrations of abscisic acid and gibberellins during dormancy break and germination in seeds of Phellodendron amurense var. wilsonii (Rutaceae). Chen SY; Chien CT; Baskin JM; Baskin CC Tree Physiol; 2010 Feb; 30(2):275-84. PubMed ID: 20008838 [TBL] [Abstract][Full Text] [Related]
59. Gene expression patterns reveal tissue-specific signaling networks controlling programmed cell death and ABA- regulated maturation in developing barley seeds. Sreenivasulu N; Radchuk V; Strickert M; Miersch O; Weschke W; Wobus U Plant J; 2006 Jul; 47(2):310-27. PubMed ID: 16771774 [TBL] [Abstract][Full Text] [Related]
60. Integrated analysis of seed proteome and mRNA oxidation reveals distinct post-transcriptional features regulating dormancy in wheat (Triticum aestivum L.). Gao F; Rampitsch C; Chitnis VR; Humphreys GD; Jordan MC; Ayele BT Plant Biotechnol J; 2013 Oct; 11(8):921-32. PubMed ID: 23745731 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]