BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 16709203)

  • 1. Isolation of precise plastid deletion mutants by homology-based excision: a resource for site-directed mutagenesis, multi-gene changes and high-throughput plastid transformation.
    Kode V; Mudd EA; Iamtham S; Day A
    Plant J; 2006 Jun; 46(5):901-9. PubMed ID: 16709203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plastome engineering of ribulose-1,5-bisphosphate carboxylase/oxygenase in tobacco to form a sunflower large subunit and tobacco small subunit hybrid.
    Kanevski I; Maliga P; Rhoades DF; Gutteridge S
    Plant Physiol; 1999 Jan; 119(1):133-42. PubMed ID: 9880354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable plastid transformation in lettuce (Lactuca sativa L.).
    Lelivelt CLC; McCabe MS; Newell CA; deSnoo CB; van Dun KMP; Birch-Machin I; Gray JC; Mills KHG; Nugent JM
    Plant Mol Biol; 2005 Aug; 58(6):763-774. PubMed ID: 16240172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excision of plastid marker genes using directly repeated DNA sequences.
    Mudd EA; Madesis P; Avila EM; Day A
    Methods Mol Biol; 2014; 1132():107-23. PubMed ID: 24599849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small serine recombination systems ParA-MRS and CinH-RS2 perform precise excision of plastid DNA.
    Shao M; Blechl A; Thomson JG
    Plant Biotechnol J; 2017 Dec; 15(12):1577-1589. PubMed ID: 28421718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids.
    Kanamoto H; Yamashita A; Asao H; Okumura S; Takase H; Hattori M; Yokota A; Tomizawa K
    Transgenic Res; 2006 Apr; 15(2):205-17. PubMed ID: 16604461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient Plastid Transformation in Arabidopsis.
    Yu Q; Lutz KA; Maliga P
    Plant Physiol; 2017 Sep; 175(1):186-193. PubMed ID: 28739820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. OsCpn60α1, encoding the plastid chaperonin 60α subunit, is essential for folding of rbcL.
    Kim SR; Yang JI; An G
    Mol Cells; 2013 May; 35(5):402-9. PubMed ID: 23620301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multiple shoot induction system for peptide-mediated gene delivery into plastids in
    Odahara M; Ara MT; Nakagawa R; Horii Y; Ishio S; Ogita S; Numata K
    Plant Biotechnol (Tokyo); 2023 Dec; 40(4):263-271. PubMed ID: 38434117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chloroplast transformation in new cultivars of tomato through particle bombardment.
    Tanwar N; Mahto BK; Rookes JE; Cahill DM; Bansal KC; Lenka SK
    3 Biotech; 2024 Apr; 14(4):120. PubMed ID: 38545123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unlocking the potential: Expanding plastid transformation for beyond-organelle function.
    Liu P
    Plant Cell; 2023 Sep; 35(9):3386-3387. PubMed ID: 37352126
    [No Abstract]   [Full Text] [Related]  

  • 12. Knockout punches with a fistful of zinc fingers.
    Wilson JH
    Proc Natl Acad Sci U S A; 2008 Apr; 105(15):5653-4. PubMed ID: 18401029
    [No Abstract]   [Full Text] [Related]  

  • 13. Recent Advances in Antibiotic-Free Markers; Novel Technologies to Enhance Safe Human Food Production in the World.
    Mmbando GS
    Mol Biotechnol; 2023 Jul; 65(7):1011-1022. PubMed ID: 36443619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering the plastid and mitochondrial genomes of flowering plants.
    Maliga P
    Nat Plants; 2022 Sep; 8(9):996-1006. PubMed ID: 36038655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Marker-Free Transplastomic Plants by Excision of Plastid Marker Genes Using Directly Repeated DNA Sequences.
    Mudd EA; Madesis P; Avila EM; Day A
    Methods Mol Biol; 2021; 2317():95-107. PubMed ID: 34028764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigational new drug enabling angiotensin oral-delivery studies to attenuate pulmonary hypertension.
    Daniell H; Mangu V; Yakubov B; Park J; Habibi P; Shi Y; Gonnella PA; Fisher A; Cook T; Zeng L; Kawut SM; Lahm T
    Biomaterials; 2020 Mar; 233():119750. PubMed ID: 31931441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant cell-made protein antigens for induction of Oral tolerance.
    Daniell H; Kulis M; Herzog RW
    Biotechnol Adv; 2019 Nov; 37(7):107413. PubMed ID: 31251968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of leaf enzymes in the detergent and textile industries: launching of a new platform technology.
    Kumari U; Singh R; Ray T; Rana S; Saha P; Malhotra K; Daniell H
    Plant Biotechnol J; 2019 Jun; 17(6):1167-1182. PubMed ID: 30963679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of leaf and microbial pectinases: commercial launching of a new platform technology.
    Daniell H; Ribeiro T; Lin S; Saha P; McMichael C; Chowdhary R; Agarwal A
    Plant Biotechnol J; 2019 Jun; 17(6):1154-1166. PubMed ID: 30963657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selectable Markers and Reporter Genes for Engineering the Chloroplast of
    Esland L; Larrea-Alvarez M; Purton S
    Biology (Basel); 2018 Oct; 7(4):. PubMed ID: 30309004
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.