These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 16709576)

  • 1. Shoot development and extension of Quercus serrata saplings in response to insect damage and nutrient conditions.
    Mizumachi E; Mori A; Osawa N; Akiyama R; Tokuchi N
    Ann Bot; 2006 Jul; 98(1):219-26. PubMed ID: 16709576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relative shoot height and irradiance and the shoot and leaf properties of Quercus serrata saplings.
    Takahashi K; Okada J; Urata E
    Tree Physiol; 2006 Aug; 26(8):1035-42. PubMed ID: 16651253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Allocation of nitrogen within the crown during leaf expansion in Quercus serrata saplings.
    Ueda MU; Mizumachi E; Tokuchi N
    Tree Physiol; 2009 Jul; 29(7):913-9. PubMed ID: 19448267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gross nitrogen retranslocation within a canopy of Quercus serrata saplings.
    Ueda MU
    Tree Physiol; 2012 Jul; 32(7):859-66. PubMed ID: 22643636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biogeographic patterns of nutrient resorption from Quercus variabilis Blume leaves across China.
    Sun X; Kang H; Chen HY; Björn B; Samuel BF; Liu C
    Plant Biol (Stuttg); 2016 May; 18(3):505-13. PubMed ID: 26597338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recycling of nitrogen in herbivore feces: plant recovery, herbivore assimilation, soil retention, and leaching losses.
    Frost CJ; Hunter MD
    Oecologia; 2007 Feb; 151(1):42-53. PubMed ID: 17089141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Foliage nitrogen turnover: differences among nitrogen absorbed at different times by Quercus serrata saplings.
    Ueda MU; Mizumachi E; Tokuchi N
    Ann Bot; 2011 Jul; 108(1):169-75. PubMed ID: 21515608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interspecific variation in compensatory regrowth to herbivory associated with soil nutrients in three Ficus (Moraceae) saplings.
    Zhao J; Chen J
    PLoS One; 2012; 7(9):e45092. PubMed ID: 22984616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of nutrient limitations in forest gaps enhances growth rate and resistance to cavitation in subtropical canopy tree species differing in shade tolerance.
    Villagra M; Campanello PI; Montti L; Goldstein G
    Tree Physiol; 2013 Mar; 33(3):285-96. PubMed ID: 23436182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do elevation of CO(2) concentration and nitrogen fertilization alter storage and remobilization of carbon and nitrogen in pedunculate oak saplings?
    Vizoso S; Gerant D; Guehl JM; Joffre R; Chalot M; Gross P; Maillard P
    Tree Physiol; 2008 Nov; 28(11):1729-39. PubMed ID: 18765378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomass allocation and leaf chemical defence in defoliated seedlings of Quercus serrata with respect to carbon-nitrogen balance.
    Hikosaka K; Takashima T; Kabeya D; Hirose T; Kamata N
    Ann Bot; 2005 May; 95(6):1025-32. PubMed ID: 15760913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific polyphenols and tannins are associated with defense against insect herbivores in the tropical oak Quercus oleoides.
    Moctezuma C; Hammerbacher A; Heil M; Gershenzon J; Méndez-Alonzo R; Oyama K
    J Chem Ecol; 2014 May; 40(5):458-67. PubMed ID: 24809533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variations in sucrose and ABA concentrations are concomitant with heteroblastic leaf shape changes in a rhythmically growing species (Quercus robur).
    Le Hir R; Leduc N; Jeannette E; Viemont JD; Pelleschi-Travier S
    Tree Physiol; 2006 Feb; 26(2):229-38. PubMed ID: 16356920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of partial defoliation on carbon and nitrogen partitioning and photosynthetic carbon uptake by two-year-old cork oak (Quercus suber) saplings.
    Cerasoli S; Scartazza A; Brugnoli E; Chaves MM; Pereira JS
    Tree Physiol; 2004 Jan; 24(1):83-90. PubMed ID: 14652217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Herbivore-induced shifts in carbon and nitrogen allocation in red oak seedlings.
    Frost CJ; Hunter MD
    New Phytol; 2008; 178(4):835-845. PubMed ID: 18346100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulated browsing affects leaf shedding phenology and litter quality of oak and birch saplings.
    Palacio S; Hester AJ; Maestro M; Millard P
    Tree Physiol; 2013 Apr; 33(4):438-45. PubMed ID: 23574752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotic and abiotic factors associated with altitudinal variation in plant traits and herbivory in a dominant oak species.
    Abdala-Roberts L; Rasmann S; Berny-Mier Y Terán JC; Covelo F; Glauser G; Moreira X
    Am J Bot; 2016 Dec; 103(12):2070-2078. PubMed ID: 27965243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remobilization of acorn nitrogen for seedling growth in holm oak (Quercus ilex), cultivated with contrasting nutrient availability.
    Villar-Salvador P; Heredia N; Millard P
    Tree Physiol; 2010 Feb; 30(2):257-63. PubMed ID: 20022863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of roots and cotyledons as storage organs in early stages of establishment in Quercus crispula: a quantitative analysis of the nonstructural carbohydrate in cotyledons and roots.
    Kabeya D; Sakai S
    Ann Bot; 2003 Oct; 92(4):537-45. PubMed ID: 12907467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The importance of being red when young: anthocyanins and the protection of young leaves of Quercus coccifera from insect herbivory and excess light.
    Karageorgou P; Manetas Y
    Tree Physiol; 2006 May; 26(5):613-21. PubMed ID: 16452075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.