These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 16709670)

  • 1. Structural and functional recovery from early monocular deprivation in adult rats.
    Pizzorusso T; Medini P; Landi S; Baldini S; Berardi N; Maffei L
    Proc Natl Acad Sci U S A; 2006 May; 103(22):8517-22. PubMed ID: 16709670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactivation of ocular dominance plasticity in the adult visual cortex.
    Pizzorusso T; Medini P; Berardi N; Chierzi S; Fawcett JW; Maffei L
    Science; 2002 Nov; 298(5596):1248-51. PubMed ID: 12424383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenetic treatments of adult rats promote recovery from visual acuity deficits induced by long-term monocular deprivation.
    Silingardi D; Scali M; Belluomini G; Pizzorusso T
    Eur J Neurosci; 2010 Jun; 31(12):2185-92. PubMed ID: 20550570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dendritic spine dynamics are regulated by monocular deprivation and extracellular matrix degradation.
    Oray S; Majewska A; Sur M
    Neuron; 2004 Dec; 44(6):1021-30. PubMed ID: 15603744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monocular deprivation induces homosynaptic long-term depression in visual cortex.
    Rittenhouse CD; Shouval HZ; Paradiso MA; Bear MF
    Nature; 1999 Jan; 397(6717):347-50. PubMed ID: 9950426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of T-type Ca2+ channels in the potentiation of synaptic and visual responses during the critical period in rat visual cortex.
    Yoshimura Y; Inaba M; Yamada K; Kurotani T; Begum T; Reza F; Maruyama T; Komatsu Y
    Eur J Neurosci; 2008 Aug; 28(4):730-43. PubMed ID: 18657180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experience-dependent recovery of vision following chronic deprivation amblyopia.
    He HY; Ray B; Dennis K; Quinlan EM
    Nat Neurosci; 2007 Sep; 10(9):1134-6. PubMed ID: 17694050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early alcohol exposure impairs ocular dominance plasticity throughout the critical period.
    Medina AE; Ramoa AS
    Brain Res Dev Brain Res; 2005 Jun; 157(1):107-11. PubMed ID: 15939092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How monocular deprivation shifts ocular dominance in visual cortex of young mice.
    Frenkel MY; Bear MF
    Neuron; 2004 Dec; 44(6):917-23. PubMed ID: 15603735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prior experience enhances plasticity in adult visual cortex.
    Hofer SB; Mrsic-Flogel TD; Bonhoeffer T; Hübener M
    Nat Neurosci; 2006 Jan; 9(1):127-32. PubMed ID: 16327785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The sensitive period.
    von Noorden GK; Crawford ML
    Trans Ophthalmol Soc U K (1962); 1979; 99(3):442-6. PubMed ID: 298829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monocular deprivation enhances the nuclear signalling of extracellular signal-regulated kinase in the developing visual cortex.
    Takamura H; Ichisaka S; Hayashi C; Maki H; Hata Y
    Eur J Neurosci; 2007 Nov; 26(10):2884-98. PubMed ID: 17973925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical period mechanisms in developing visual cortex.
    Hensch TK
    Curr Top Dev Biol; 2005; 69():215-37. PubMed ID: 16243601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Screening mouse vision with intrinsic signal optical imaging.
    Heimel JA; Hartman RJ; Hermans JM; Levelt CN
    Eur J Neurosci; 2007 Feb; 25(3):795-804. PubMed ID: 17328775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery from chronic monocular deprivation following reactivation of thalamocortical plasticity by dark exposure.
    Montey KL; Quinlan EM
    Nat Commun; 2011; 2():317. PubMed ID: 21587234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition.
    Sale A; Maya Vetencourt JF; Medini P; Cenni MC; Baroncelli L; De Pasquale R; Maffei L
    Nat Neurosci; 2007 Jun; 10(6):679-81. PubMed ID: 17468749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experience-dependent pruning of dendritic spines in visual cortex by tissue plasminogen activator.
    Mataga N; Mizuguchi Y; Hensch TK
    Neuron; 2004 Dec; 44(6):1031-41. PubMed ID: 15603745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactivation of visual cortical plasticity by NEP1-40 from early monocular deprivation in adult rats.
    Luo Y; Wu X; Liu S; Li K
    Neurosci Lett; 2011 May; 494(3):196-201. PubMed ID: 21397658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical period revisited: impact on vision.
    Morishita H; Hensch TK
    Curr Opin Neurobiol; 2008 Feb; 18(1):101-7. PubMed ID: 18534841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytoskeleton alteration correlates with gross structural plasticity in the cat lateral geniculate nucleus.
    Kutcher MR; Duffy KR
    Vis Neurosci; 2007; 24(6):775-85. PubMed ID: 17915043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.