These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

415 related articles for article (PubMed ID: 16709921)

  • 21. Tethered stick insect walking: a modified slippery surface setup with optomotor stimulation and electrical monitoring of tarsal contact.
    Gruhn M; Hoffmann O; Dübbert M; Scharstein H; Büschges A
    J Neurosci Methods; 2006 Dec; 158(2):195-206. PubMed ID: 16824615
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Context-dependent modulation of interlimb cutaneous reflexes in arm muscles as a function of stability threat during walking.
    Haridas C; Zehr EP; Misiaszek JE
    J Neurophysiol; 2006 Dec; 96(6):3096-103. PubMed ID: 17005610
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of Thoracic Connective Lesion on Inter-Leg Coordination in Freely Walking Stick Insects.
    Niemeier M; Jeschke M; Dürr V
    Front Bioeng Biotechnol; 2021; 9():628998. PubMed ID: 33959593
    [TBL] [Abstract][Full Text] [Related]  

  • 24. State-dependent corrective reactions for backward balance losses during human walking.
    Kagawa T; Ohta Y; Uno Y
    Hum Mov Sci; 2011 Dec; 30(6):1210-24. PubMed ID: 21704417
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tuning of a basic coordination pattern constructs straight-ahead and curved walking in humans.
    Courtine G; Schieppati M
    J Neurophysiol; 2004 Apr; 91(4):1524-35. PubMed ID: 14668296
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intersegmental coordination: influence of a single walking leg on the neighboring segments in the stick insect walking system.
    Borgmann A; Scharstein H; Büschges A
    J Neurophysiol; 2007 Sep; 98(3):1685-96. PubMed ID: 17596420
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neurobiology: reconstructing the neural control of leg coordination.
    Zill SN; Keller BR
    Curr Biol; 2009 May; 19(9):R371-3. PubMed ID: 19439260
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insect walking is based on a decentralized architecture revealing a simple and robust controller.
    Cruse H; Dürr V; Schmitz J
    Philos Trans A Math Phys Eng Sci; 2007 Jan; 365(1850):221-50. PubMed ID: 17148058
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Long-lasting, context-dependent modification of stepping in the cat after repeated stumbling-corrective responses.
    McVea DA; Pearson KG
    J Neurophysiol; 2007 Jan; 97(1):659-69. PubMed ID: 17108090
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A load-based mechanism for inter-leg coordination in insects.
    Dallmann CJ; Hoinville T; Dürr V; Schmitz J
    Proc Biol Sci; 2017 Dec; 284(1868):. PubMed ID: 29187626
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The extensor tibiae muscle of the stick insect: biomechanical properties of an insect walking leg muscle.
    Guschlbauer C; Scharstein H; Büschges A
    J Exp Biol; 2007 Mar; 210(Pt 6):1092-108. PubMed ID: 17337721
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamic simulation of insect walking.
    Ekeberg O; Blümel M; Büschges A
    Arthropod Struct Dev; 2004 Jul; 33(3):287-300. PubMed ID: 18089040
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Load signals assist the generation of movement-dependent reflex reversal in the femur-tibia joint of stick insects.
    Akay T; Büschges A
    J Neurophysiol; 2006 Dec; 96(6):3532-7. PubMed ID: 16956989
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Motor control of an insect leg during level and incline walking.
    Dallmann CJ; Dürr V; Schmitz J
    J Exp Biol; 2019 Apr; 222(Pt 7):. PubMed ID: 30944163
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The antennal motor system of the stick insect Carausius morosus: anatomy and antennal movement pattern during walking.
    Dürr V; König Y; Kittmann R
    J Comp Physiol A; 2001 Mar; 187(2):131-44. PubMed ID: 15524001
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control.
    Dallmann CJ; Dürr V; Schmitz J
    Proc Biol Sci; 2016 Jan; 283(1823):. PubMed ID: 26791608
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Correlation between ranges of leg walking angles and passive rest angles among leg types in stick insects.
    Guschlbauer C; Hooper SL; Mantziaris C; Schwarz A; Szczecinski NS; Büschges A
    Curr Biol; 2022 May; 32(10):2334-2340.e3. PubMed ID: 35476937
    [TBL] [Abstract][Full Text] [Related]  

  • 38. System identification of muscle-joint interactions of the cat hind limb during locomotion.
    Harischandra N; Ekeberg O
    Biol Cybern; 2008 Aug; 99(2):125-38. PubMed ID: 18648849
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Leg coordination during turning on an extremely narrow substrate in a bug, Mesocerus marginatus (Heteroptera, Coreidae).
    Frantsevich LI; Cruse H
    J Insect Physiol; 2005 Oct; 51(10):1092-104. PubMed ID: 16162355
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A neuromechanical model for the neuronal basis of curve walking in the stick insect.
    Knops S; Tóth TI; Guschlbauer C; Gruhn M; Daun-Gruhn S
    J Neurophysiol; 2013 Feb; 109(3):679-91. PubMed ID: 23136343
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.