These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 16709921)

  • 41. Pattern generation for walking and searching movements of a stick insect leg. I. Coordination of motor activity.
    Fischer H; Schmidt J; Haas R; Büschges A
    J Neurophysiol; 2001 Jan; 85(1):341-53. PubMed ID: 11152734
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Octopamine effects mimick state-dependent changes in a proprioceptive feedback system.
    Büschges A; Kittmann R; Ramirez JM
    J Neurobiol; 1993 May; 24(5):598-610. PubMed ID: 8326300
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Task specific adaptations in rat locomotion: runway versus horizontal ladder.
    Bolton DA; Tse AD; Ballermann M; Misiaszek JE; Fouad K
    Behav Brain Res; 2006 Apr; 168(2):272-9. PubMed ID: 16406145
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A three-leg model producing tetrapod and tripod coordination patterns of ipsilateral legs in the stick insect.
    Tóth TI; Daun-Gruhn S
    J Neurophysiol; 2016 Feb; 115(2):887-906. PubMed ID: 26581871
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nonspiking pathways antagonize the resistance reflex in the thoraco-coxal joint of stick insects.
    Büschges A; Schmitz J
    J Neurobiol; 1991 Apr; 22(3):224-37. PubMed ID: 1890415
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Postural uncertainty leads to dynamic control of cutaneous reflexes from the foot during human walking.
    Haridas C; Zehr EP; Misiaszek JE
    Brain Res; 2005 Nov; 1062(1-2):48-62. PubMed ID: 16248988
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Coordinated interlimb compensatory responses to electrical stimulation of cutaneous nerves in the hand and foot during walking.
    Haridas C; Zehr EP
    J Neurophysiol; 2003 Nov; 90(5):2850-61. PubMed ID: 12853441
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Computer simulation of stepping in the hind legs of the cat: an examination of mechanisms regulating the stance-to-swing transition.
    Ekeberg O; Pearson K
    J Neurophysiol; 2005 Dec; 94(6):4256-68. PubMed ID: 16049149
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Active tactile exploration for adaptive locomotion in the stick insect.
    Schütz C; Dürr V
    Philos Trans R Soc Lond B Biol Sci; 2011 Nov; 366(1581):2996-3005. PubMed ID: 21969681
    [TBL] [Abstract][Full Text] [Related]  

  • 50. What causes a crossover step when walking on uneven ground? A study in healthy young women.
    Thies SB; Ashton-Miller JA; Richardson JK
    Gait Posture; 2007 Jun; 26(1):156-60. PubMed ID: 17045479
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Intersegmental transfer of sensory signals in the stick insect leg muscle control system.
    Stein W; Büschges A; Bässler U
    J Neurobiol; 2006 Sep; 66(11):1253-69. PubMed ID: 16902990
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sensory signals of unloading in one leg follow stance onset in another leg: transfer of load and emergent coordination in cockroach walking.
    Zill SN; Keller BR; Duke ER
    J Neurophysiol; 2009 May; 101(5):2297-304. PubMed ID: 19261716
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modulation of membrane potential in mesothoracic moto- and interneurons during stick insect front-leg walking.
    Ludwar BCh; Westmark S; Büschges A; Schmidt J
    J Neurophysiol; 2005 Oct; 94(4):2772-84. PubMed ID: 16000520
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanisms of stick insect locomotion in a gap-crossing paradigm.
    Bläsing B; Cruse H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Mar; 190(3):173-83. PubMed ID: 14735308
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Muscle reflexes and synergies triggered by an unexpected support surface height during walking.
    van der Linden MH; Marigold DS; Gabreëls FJ; Duysens J
    J Neurophysiol; 2007 May; 97(5):3639-50. PubMed ID: 17392408
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Adaptation of cutaneous stumble correction when tripping is part of the locomotor environment.
    Haridas C; Zehr EP; Misiaszek JE
    J Neurophysiol; 2008 Jun; 99(6):2789-97. PubMed ID: 18417633
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Speed-dependent interplay between local pattern-generating activity and sensory signals during walking in Drosophila.
    Berendes V; Zill SN; Büschges A; Bockemühl T
    J Exp Biol; 2016 Dec; 219(Pt 23):3781-3793. PubMed ID: 27688052
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Gimbals in the insect leg.
    Frantsevich L; Wang W
    Arthropod Struct Dev; 2009 Jan; 38(1):16-30. PubMed ID: 18765299
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The influence of focal cerebellar lesions on the control and adaptation of gait.
    Ilg W; Giese MA; Gizewski ER; Schoch B; Timmann D
    Brain; 2008 Nov; 131(Pt 11):2913-27. PubMed ID: 18835866
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effects of arm swing on human gait stability.
    Bruijn SM; Meijer OG; Beek PJ; van Dieën JH
    J Exp Biol; 2010 Dec; 213(Pt 23):3945-52. PubMed ID: 21075935
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.