These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 1671037)

  • 1. Dihydroorotase from Escherichia coli. Substitution of Co(II) for the active site Zn(II).
    Brown DC; Collins KD
    J Biol Chem; 1991 Jan; 266(3):1597-604. PubMed ID: 1671037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dihydroorotase from Escherichia coli. Sulfhydryl group-metal ion interactions.
    Washabaugh MW; Collins KD
    J Biol Chem; 1986 May; 261(13):5920-9. PubMed ID: 2871020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Divalent metal derivatives of the hamster dihydroorotase domain.
    Huang DT; Thomas MA; Christopherson RI
    Biochemistry; 1999 Aug; 38(31):9964-70. PubMed ID: 10433703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular structure of dihydroorotase: a paradigm for catalysis through the use of a binuclear metal center.
    Thoden JB; Phillips GN; Neal TM; Raushel FM; Holden HM
    Biochemistry; 2001 Jun; 40(24):6989-97. PubMed ID: 11401542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme elements involved in the interconversion of L-carbamylaspartate and L-dihydroorotate by dihydroorotase from Clostridium oroticum.
    Pettigrew DW; Mehta BJ; Bidigare RR; Choudhury RR; Scheffler JE; Sander EG
    Arch Biochem Biophys; 1985 Dec; 243(2):447-53. PubMed ID: 2867744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mononuclear metal center of type-I dihydroorotase from Aquifex aeolicus.
    Edwards BF; Fernando R; Martin PD; Grimley E; Cordes M; Vaishnav A; Brunzelle JS; Evans HG; Evans DR
    BMC Biochem; 2013 Dec; 14():36. PubMed ID: 24314009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dihydroorotase from Escherichia coli. Purification and characterization.
    Washabaugh MW; Collins KD
    J Biol Chem; 1984 Mar; 259(5):3293-8. PubMed ID: 6142052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physicochemical properties of cloned nucleocapsid protein from HIV. Interactions with metal ions.
    Fitzgerald DW; Coleman JE
    Biochemistry; 1991 May; 30(21):5195-201. PubMed ID: 2036385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mass spectrometric determination of the cleavage sites in Escherichia coli dihydroorotase induced by a cysteine-specific reagent.
    Daniel R; Caminade E; Martel A; Le Goffic F; Canosa D; Carrascal M; Abian J
    J Biol Chem; 1997 Oct; 272(43):26934-9. PubMed ID: 9341128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The methionyl aminopeptidase from Escherichia coli can function as an iron(II) enzyme.
    D'souza VM; Holz RC
    Biochemistry; 1999 Aug; 38(34):11079-85. PubMed ID: 10460163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural characterization of Zn(II)-, Co(II)-, and Mn(II)-loaded forms of the argE-encoded N-acetyl-L-ornithine deacetylase from Escherichia coli.
    Tao Y; Shokes JE; McGregor WC; Scott RA; Holz RC
    J Inorg Biochem; 2012 Jun; 111():157-63. PubMed ID: 22459917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective substitution in vitro of an intrinsic zinc of Escherichia coli RNA polymerase with various divalent metals.
    Chatterji D; Wu FY
    Biochemistry; 1982 Sep; 21(19):4651-6. PubMed ID: 6753922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of the dihydroorotase reaction.
    Porter TN; Li Y; Raushel FM
    Biochemistry; 2004 Dec; 43(51):16285-92. PubMed ID: 15610022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional differences between the two intrinsic zinc ions of Escherichia coli RNA polymerase.
    Giedroc DP; Coleman JE
    Biochemistry; 1986 Aug; 25(17):4969-78. PubMed ID: 3094579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Function of conserved histidine residues in mammalian dihydroorotase.
    Zimmermann BH; Kemling NM; Evans DR
    Biochemistry; 1995 May; 34(21):7038-46. PubMed ID: 7766613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the metal receptor sites in Escherichia coli Zur, an ultrasensitive zinc(II) metalloregulatory protein.
    Outten CE; Tobin DA; Penner-Hahn JE; O'Halloran TV
    Biochemistry; 2001 Sep; 40(35):10417-23. PubMed ID: 11523983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structures of ligand-free and inhibitor complexes of dihydroorotase from Escherichia coli: implications for loop movement in inhibitor design.
    Lee M; Chan CW; Graham SC; Christopherson RI; Guss JM; Maher MJ
    J Mol Biol; 2007 Jul; 370(5):812-25. PubMed ID: 17550785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic studies of zinc(II)- and cobalt(II)-associated Escherichia coli formamidopyrimidine-DNA glycosylase: extended X-ray absorption fine structure evidence for a metal-binding domain.
    Buchko GW; Hess NJ; Bandaru V; Wallace SS; Kennedy MA
    Biochemistry; 2000 Oct; 39(40):12441-9. PubMed ID: 11015225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aquifex aeolicus dihydroorotase: association with aspartate transcarbamoylase switches on catalytic activity.
    Ahuja A; Purcarea C; Ebert R; Sadecki S; Guy HI; Evans DR
    J Biol Chem; 2004 Dec; 279(51):53136-44. PubMed ID: 15381710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalysis by hamster dihydroorotase: zinc binding, site-directed mutagenesis, and interaction with inhibitors.
    Williams NK; Manthey MK; Hambley TW; O'Donoghue SI; Keegan M; Chapman BE; Christopherson RI
    Biochemistry; 1995 Sep; 34(36):11344-52. PubMed ID: 7547862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.