These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 16710435)

  • 1. A simple confocal fibre-optic laser method for intraocular lens power measurement.
    Ilev IK
    Eye (Lond); 2007 Jun; 21(6):819-23. PubMed ID: 16710435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the effect of laser beam width on quantitative evaluation of optical properties of intraocular lens implants.
    Walker BN; James RH; Chakravarty A; Calogero D; Ilev IK
    J Biomed Opt; 2014 May; 19(5):055004. PubMed ID: 24817618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Testing the dioptric power accuracy of exact-power-labeled intraocular lenses.
    Hoffer KJ; Calogero D; Faaland RW; Ilev IK
    J Cataract Refract Surg; 2009 Nov; 35(11):1995-9. PubMed ID: 19878834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A rapid method for measuring intraocular lens power in vitro with a focimeter.
    García-Domene MC; Díez-Ajenjo MA; Peris-Martínez C; Navea A; Artigas JM
    Exp Eye Res; 2015 Nov; 140():190-192. PubMed ID: 26386149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noncontact common-path Fourier domain optical coherence tomography method for in vitro intraocular lens power measurement.
    Huang Y; Zhang K; Kang JU; Calogero D; James RH; Ilev IK
    J Biomed Opt; 2011 Dec; 16(12):126005. PubMed ID: 22191922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accuracy in determining intraocular lens dioptric power assessed by interlaboratory tests.
    Norrby NE; Grossman LW; Geraghty EP; Kreiner CF; Mihori M; Patel AS; Portney V; Silberman DM
    J Cataract Refract Surg; 1996 Sep; 22(7):983-93. PubMed ID: 9041095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accuracy of predicted refraction with multifocal intraocular lenses using two biometry measurement devices and multiple intraocular lens power calculation formulas.
    Reitblat O; Assia EI; Kleinmann G; Levy A; Barrett GD; Abulafia A
    Clin Exp Ophthalmol; 2015; 43(4):328-34. PubMed ID: 25491591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating and defining the sharpness of intraocular lenses: microedge structure of commercially available square-edged hydrophobic lenses.
    Werner L; Müller M; Tetz M
    J Cataract Refract Surg; 2008 Feb; 34(2):310-7. PubMed ID: 18242459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intraocular lens power requirements for humanitarian missions.
    Lombard PN; McClatchey SK; Borges OA
    J Cataract Refract Surg; 2009 Oct; 35(10):1734-8. PubMed ID: 19781468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scheimpflug imaging to determine intraocular lens power in vivo.
    Turner SJ; Lee EJ; Hu V; Hollick EJ
    J Cataract Refract Surg; 2007 Jun; 33(6):1041-4. PubMed ID: 17531700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ronchi test for testing the powers of bifocal intraocular lenses.
    González C; Villegas ER; Carretero L; Fimia A
    Ophthalmic Physiol Opt; 1997 Mar; 17(2):161-3. PubMed ID: 9196681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of intraocular lens mechanical stability.
    Lane S; Collins S; Das KK; Maass S; Thatthamla I; Schatz H; Van Noy S; Jain R
    J Cataract Refract Surg; 2019 Apr; 45(4):501-506. PubMed ID: 30686704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of intraocular lens power calculation methods in eyes that have undergone laser-assisted in-situ keratomileusis.
    Wang L; Booth MA; Koch DD
    Trans Am Ophthalmol Soc; 2004; 102():189-96; discussion 196-7. PubMed ID: 15747757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intraocular lens optic edge design for the prevention of posterior capsule opacification after cataract surgery.
    Maedel S; Evans JR; Harrer-Seely A; Findl O
    Cochrane Database Syst Rev; 2021 Aug; 8(8):CD012516. PubMed ID: 34398965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of intraocular lens power calculation methods in eyes that have undergone LASIK.
    Wang L; Booth MA; Koch DD
    Ophthalmology; 2004 Oct; 111(10):1825-31. PubMed ID: 15465542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Versatile optical setup customized to verify the quality of spherical and aspheric intraocular lenses.
    Trindade BLC; Amaral FT; de Lima Monteiro DW; Cronemberger S
    J Opt Soc Am A Opt Image Sci Vis; 2019 Apr; 36(4):B132-B137. PubMed ID: 31044993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intraocular lens power adjustment by a femtosecond laser: In vitro evaluation of power change, modulation transfer function, light transmission, and light scattering in a blue light-filtering lens.
    Nguyen J; Werner L; Ludlow J; Aliancy J; Ha L; Masino B; Enright S; Alley RK; Sahler R
    J Cataract Refract Surg; 2018 Feb; 44(2):226-230. PubMed ID: 29525614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface roughness of intraocular lenses with different dioptric powers assessed by atomic force microscopy.
    Lombardo M; Talu S; Talu M; Serrao S; Ducoli P
    J Cataract Refract Surg; 2010 Sep; 36(9):1573-8. PubMed ID: 20692572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating impact of Nd: YAG laser associated defects on optical quality of hydrophilic and hydrophobic intraocular lenses using visualization of light propagation and USAF test targets.
    Borkenstein AF; Borkenstein EM; Omidi P; Langenbucher A
    BMC Ophthalmol; 2022 Dec; 22(1):494. PubMed ID: 36527032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the Chromatic Dispersion of Hydrophobic and Hydrophilic Intraocular Lenses.
    Eppig T; Rawer A; Hoffmann P; Langenbucher A; Schröder S
    Optom Vis Sci; 2020 Apr; 97(4):305-313. PubMed ID: 32304541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.