These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Biodegradation of aromatic compounds by white rot and ectomycorrhizal fungal species and the accumulation of chlorinated benzoic acid in ectomycorrhizal pine seedlings. Dittmann J; Heyser W; Bücking H Chemosphere; 2002 Oct; 49(3):297-306. PubMed ID: 12363308 [TBL] [Abstract][Full Text] [Related]
4. Uptake and transfer of nutrients in ectomycorrhizal associations: interactions between photosynthesis and phosphate nutrition. Bücking H; Heyser W Mycorrhiza; 2003 Apr; 13(2):59-68. PubMed ID: 12682827 [TBL] [Abstract][Full Text] [Related]
5. Potassium nutrition of ectomycorrhizal Pinus pinaster: overexpression of the Hebeloma cylindrosporum HcTrk1 transporter affects the translocation of both K(+) and phosphorus in the host plant. Garcia K; Delteil A; Conéjéro G; Becquer A; Plassard C; Sentenac H; Zimmermann S New Phytol; 2014 Feb; 201(3):951-960. PubMed ID: 24279702 [TBL] [Abstract][Full Text] [Related]
6. Plant-driven weathering of apatite--the role of an ectomycorrhizal fungus. Smits MM; Bonneville S; Benning LG; Banwart SA; Leake JR Geobiology; 2012 Sep; 10(5):445-56. PubMed ID: 22624799 [TBL] [Abstract][Full Text] [Related]
7. Ectomycorrhizal weathering of the soil minerals muscovite and hornblende. van Schöll L; Smits MM; Hoffland E New Phytol; 2006; 171(4):805-13. PubMed ID: 16918551 [TBL] [Abstract][Full Text] [Related]
8. X-ray absorption spectroscopy (XAS) of toxic metal mineral transformations by fungi. Fomina M; Charnock J; Bowen AD; Gadd GM Environ Microbiol; 2007 Feb; 9(2):308-21. PubMed ID: 17222130 [TBL] [Abstract][Full Text] [Related]
9. Different ectomycorrhizal fungal species impact poplar growth but not phosphorus utilization under low P supply. Shi H; Lipka U; Polle A Tree Physiol; 2024 Jul; 44(7):. PubMed ID: 38916255 [TBL] [Abstract][Full Text] [Related]
10. Pinus pinaster seedlings and their fungal symbionts show high plasticity in phosphorus acquisition in acidic soils. Ali MA; Louche J; Legname E; Duchemin M; Plassard C Tree Physiol; 2009 Dec; 29(12):1587-97. PubMed ID: 19840995 [TBL] [Abstract][Full Text] [Related]
11. Phosphate availability and ectomycorrhizal symbiosis with Pinus sylvestris have independent effects on the Paxillus involutus transcriptome. Paparokidou C; Leake JR; Beerling DJ; Rolfe SA Mycorrhiza; 2021 Jan; 31(1):69-83. PubMed ID: 33200348 [TBL] [Abstract][Full Text] [Related]
12. Ectomycorrhizal fungi and exogenous auxins influence root and mycorrhiza formation of Scots pine hypocotyl cuttings in vitro. Niemi K; Vuorinen T; Ernstsen A; Häggman H Tree Physiol; 2002 Dec; 22(17):1231-9. PubMed ID: 12464576 [TBL] [Abstract][Full Text] [Related]
13. Effects of exogenous diamines on the interaction between ectomycorrhizal fungi and adventitious root formation in Scots pine in vitro. Niemi K; Häggman H; Sarjala T Tree Physiol; 2002 Apr; 22(6):373-81. PubMed ID: 11960762 [TBL] [Abstract][Full Text] [Related]
14. Rates and quantities of carbon flux to ectomycorrhizal mycelium following 14C pulse labeling of Pinus sylvestris seedlings: effects of litter patches and interaction with a wood-decomposer fungus. Leake JR; Donnelly DP; Saunders EM; Boddy L; Read DJ Tree Physiol; 2001 Feb; 21(2-3):71-82. PubMed ID: 11303651 [TBL] [Abstract][Full Text] [Related]
15. Elevated atmospheric CO2 concentration alters the effect of phosphate supply on growth of Japanese red pine (Pinus densiflora) seedlings. Kogawara S; Norisada M; Tange T; Yagi H; Kojima K Tree Physiol; 2006 Jan; 26(1):25-33. PubMed ID: 16203711 [TBL] [Abstract][Full Text] [Related]
16. Mycelial production, spread and root colonisation by the ectomycorrhizal fungi Hebeloma crustuliniforme and Paxillus involutus under elevated atmospheric CO2. Fransson PM; Taylor AF; Finlay RD Mycorrhiza; 2005 Jan; 15(1):25-31. PubMed ID: 14750001 [TBL] [Abstract][Full Text] [Related]
18. Dynamics of ectomycorrhizal mycelial growth and P transfer to the host plant in response to low and high soil P availability. Torres Aquino M; Plassard C FEMS Microbiol Ecol; 2004 May; 48(2):149-56. PubMed ID: 19712398 [TBL] [Abstract][Full Text] [Related]
19. Growth and photosynthetic responses of ectomycorrhizal pine seedlings exposed to elevated Cu in soils. Chen Y; Nara K; Wen Z; Shi L; Xia Y; Shen Z; Lian C Mycorrhiza; 2015 Oct; 25(7):561-71. PubMed ID: 25720735 [TBL] [Abstract][Full Text] [Related]
20. Two differentially regulated phosphate transporters from the symbiotic fungus Hebeloma cylindrosporum and phosphorus acquisition by ectomycorrhizal Pinus pinaster. Tatry MV; El Kassis E; Lambilliotte R; Corratgé C; van Aarle I; Amenc LK; Alary R; Zimmermann S; Sentenac H; Plassard C Plant J; 2009 Mar; 57(6):1092-102. PubMed ID: 19054369 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]