These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 16710830)

  • 1. Repression of CDC28 reduces the expression of the morphology-related transcription factors, Efg1p, Nrg1p, Rbf1p, Rim101p, Fkh2p and Tec1p and induces cell elongation in Candida albicans.
    Umeyama T; Kaneko A; Niimi M; Uehara Y
    Yeast; 2006 May; 23(7):537-52. PubMed ID: 16710830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis.
    Zheng X; Wang Y; Wang Y
    EMBO J; 2004 Apr; 23(8):1845-56. PubMed ID: 15071502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional response of Candida albicans to hypoxia: linkage of oxygen sensing and Efg1p-regulatory networks.
    Setiadi ER; Doedt T; Cottier F; Noffz C; Ernst JF
    J Mol Biol; 2006 Aug; 361(3):399-411. PubMed ID: 16854431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RBR1, a novel pH-regulated cell wall gene of Candida albicans, is repressed by RIM101 and activated by NRG1.
    Lotz H; Sohn K; Brunner H; Muhlschlegel FA; Rupp S
    Eukaryot Cell; 2004 Jun; 3(3):776-84. PubMed ID: 15189998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rad52 depletion in Candida albicans triggers both the DNA-damage checkpoint and filamentation accompanied by but independent of expression of hypha-specific genes.
    Andaluz E; Ciudad T; Gómez-Raja J; Calderone R; Larriba G
    Mol Microbiol; 2006 Mar; 59(5):1452-72. PubMed ID: 16468988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell cycle arrest during S or M phase generates polarized growth via distinct signals in Candida albicans.
    Bachewich C; Nantel A; Whiteway M
    Mol Microbiol; 2005 Aug; 57(4):942-59. PubMed ID: 16091036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p.
    Bensen ES; Martin SJ; Li M; Berman J; Davis DA
    Mol Microbiol; 2004 Dec; 54(5):1335-51. PubMed ID: 15554973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of Zinc-responsive transcription factor Csr1 in filamentous growth of the pathogenic Yeast Candida albicans.
    Kim MJ; Kil M; Jung JH; Kim J
    J Microbiol Biotechnol; 2008 Feb; 18(2):242-7. PubMed ID: 18309267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclin Cln3p links G1 progression to hyphal and pseudohyphal development in Candida albicans.
    Bachewich C; Whiteway M
    Eukaryot Cell; 2005 Jan; 4(1):95-102. PubMed ID: 15643065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A transcription factor regulatory cascade controls secreted aspartic protease expression in Candida albicans.
    Dabas N; Morschhäuser J
    Mol Microbiol; 2008 Aug; 69(3):586-602. PubMed ID: 18547391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The moonlighting protein Tsa1p is implicated in oxidative stress response and in cell wall biogenesis in Candida albicans.
    Urban C; Xiong X; Sohn K; Schröppel K; Brunner H; Rupp S
    Mol Microbiol; 2005 Sep; 57(5):1318-41. PubMed ID: 16102003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyphal chain formation in Candida albicans: Cdc28-Hgc1 phosphorylation of Efg1 represses cell separation genes.
    Wang A; Raniga PP; Lane S; Lu Y; Liu H
    Mol Cell Biol; 2009 Aug; 29(16):4406-16. PubMed ID: 19528234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p.
    Nobile CJ; Mitchell AP
    Curr Biol; 2005 Jun; 15(12):1150-5. PubMed ID: 15964282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Candida albicans protein kinase CaHsl1p regulates cell elongation and virulence.
    Umeyama T; Kaneko A; Nagai Y; Hanaoka N; Tanabe K; Takano Y; Niimi M; Uehara Y
    Mol Microbiol; 2005 Jan; 55(2):381-95. PubMed ID: 15659158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Release of transcriptional repression through the HCR promoter region confers uniform expression of HWP1 on surfaces of Candida albicans germ tubes.
    Kim S; Nguyen QB; Wolyniak MJ; Frechette G; Lehman CR; Fox BK; Sundstrom P
    PLoS One; 2018; 13(2):e0192260. PubMed ID: 29438403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CDKs and the yeast-hyphal decision.
    Wang Y
    Curr Opin Microbiol; 2009 Dec; 12(6):644-9. PubMed ID: 19837628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of cell cycle-specific gene expression through cyclin-dependent kinase-mediated phosphorylation of the forkhead transcription factor Fkh2p.
    Pic-Taylor A; Darieva Z; Morgan BA; Sharrocks AD
    Mol Cell Biol; 2004 Nov; 24(22):10036-46. PubMed ID: 15509804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of the Cdc42/Cdc24 GTPase module during Candida albicans hyphal growth.
    Bassilana M; Hopkins J; Arkowitz RA
    Eukaryot Cell; 2005 Mar; 4(3):588-603. PubMed ID: 15755921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron deprivation induces EFG1-mediated hyphal development in Candida albicans without affecting biofilm formation.
    Hameed S; Prasad T; Banerjee D; Chandra A; Mukhopadhyay CK; Goswami SK; Lattif AA; Chandra J; Mukherjee PK; Ghannoum MA; Prasad R
    FEMS Yeast Res; 2008 Aug; 8(5):744-55. PubMed ID: 18547332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global transcriptional profiling of Candida albicans cwt1 null mutant.
    Moreno I; Castillo L; Sentandreu R; Valentin E
    Yeast; 2007 Apr; 24(4):357-70. PubMed ID: 17238235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.