These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 16710874)

  • 1. Building complex glycopeptides: Development of a cysteine-free native chemical ligation protocol.
    Wu B; Chen J; Warren JD; Chen G; Hua Z; Danishefsky SJ
    Angew Chem Int Ed Engl; 2006 Jun; 45(25):4116-25. PubMed ID: 16710874
    [No Abstract]   [Full Text] [Related]  

  • 2. Rapid synthesis of acyl transfer auxiliaries for cysteine-free native glycopeptide ligation.
    Macmillan D; Anderson DW
    Org Lett; 2004 Dec; 6(25):4659-62. PubMed ID: 15575654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligation-desulfurization: a powerful combination in the synthesis of peptides and glycopeptides.
    Rohde H; Seitz O
    Biopolymers; 2010; 94(4):551-9. PubMed ID: 20593472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cysteine-free peptide and glycopeptide ligation by direct aminolysis.
    Payne RJ; Ficht S; Greenberg WA; Wong CH
    Angew Chem Int Ed Engl; 2008; 47(23):4411-5. PubMed ID: 18442150
    [No Abstract]   [Full Text] [Related]  

  • 5. Second-generation sugar-assisted ligation: a method for the synthesis of cysteine-containing glycopeptides.
    Ficht S; Payne RJ; Brik A; Wong CH
    Angew Chem Int Ed Engl; 2007; 46(31):5975-9. PubMed ID: 17607677
    [No Abstract]   [Full Text] [Related]  

  • 6. Studies related to the relative thermodynamic stability of C-terminal peptidyl esters of O-hydroxy thiophenol: emergence of a doable strategy for non-cysteine ligation applicable to the chemical synthesis of glycopeptides.
    Chen G; Warren JD; Chen J; Wu B; Wan Q; Danishefsky SJ
    J Am Chem Soc; 2006 Jun; 128(23):7460-2. PubMed ID: 16756298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sugar-assisted ligation for the synthesis of glycopeptides.
    Brik A; Wong CH
    Chemistry; 2007; 13(20):5670-5. PubMed ID: 17508364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A one-pot approach to neoglycopeptides using orthogonal native chemical ligation and click chemistry.
    Lee DJ; Mandal K; Harris PW; Brimble MA; Kent SB
    Org Lett; 2009 Nov; 11(22):5270-3. PubMed ID: 19842689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative Deselenization of Selenocysteine: Applications for Programmed Ligation at Serine.
    Malins LR; Mitchell NJ; McGowan S; Payne RJ
    Angew Chem Int Ed Engl; 2015 Oct; 54(43):12716-21. PubMed ID: 26384718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cysteine promoted C-terminal hydrazinolysis of native peptides and proteins.
    Adams AL; Cowper B; Morgan RE; Premdjee B; Caddick S; Macmillan D
    Angew Chem Int Ed Engl; 2013 Dec; 52(49):13062-6. PubMed ID: 24123371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Total synthesis of erythropoietin through the development and exploitation of enabling synthetic technologies.
    Payne RJ
    Angew Chem Int Ed Engl; 2013 Jan; 52(2):505-7. PubMed ID: 23180667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of S-linked glycopeptides in aqueous solution.
    Zhu X; Pachamuthu K; Schmidt RR
    J Org Chem; 2003 Jul; 68(14):5641-51. PubMed ID: 12839457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visible-Light-Induced Specific Desulfurization of Cysteinyl Peptide and Glycopeptide in Aqueous Solution.
    Gao XF; Du JJ; Liu Z; Guo J
    Org Lett; 2016 Mar; 18(5):1166-9. PubMed ID: 26892036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free-radical-based, specific desulfurization of cysteine: a powerful advance in the synthesis of polypeptides and glycopolypeptides.
    Wan Q; Danishefsky SJ
    Angew Chem Int Ed Engl; 2007; 46(48):9248-52. PubMed ID: 18046687
    [No Abstract]   [Full Text] [Related]  

  • 15. Efficient substitution reaction from cysteine to the serine residue of glycosylated polypeptide: repetitive peptide segment ligation strategy and the synthesis of glycosylated tetracontapeptide having acid labile sialyl-T(N) antigens.
    Okamoto R; Souma S; Kajihara Y
    J Org Chem; 2009 Mar; 74(6):2494-501. PubMed ID: 19236026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient and systematic synthesis of a small glycoconjugate library having human complex type oligosaccharides.
    Murase T; Tsuji T; Kajihara Y
    Carbohydr Res; 2009 Apr; 344(6):762-70. PubMed ID: 19285659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycopeptides as versatile tools for glycobiology.
    Buskas T; Ingale S; Boons GJ
    Glycobiology; 2006 Aug; 16(8):113R-136R. PubMed ID: 16675547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of glycosylated amino acids suitable for Fmoc solid-phase assembly.
    Cudic M; Burstein GD
    Methods Mol Biol; 2008; 494():187-208. PubMed ID: 18726575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of glyco(lipo)peptides by liposome-mediated native chemical ligation.
    Ingale S; Buskas T; Boons GJ
    Org Lett; 2006 Dec; 8(25):5785-8. PubMed ID: 17134272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semisynthesis of a homogeneous glycoprotein enzyme: ribonuclease C: part 2.
    Piontek C; Varón Silva D; Heinlein C; Pöhner C; Mezzato S; Ring P; Martin A; Schmid FX; Unverzagt C
    Angew Chem Int Ed Engl; 2009; 48(11):1941-5. PubMed ID: 19180621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.