BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 16711070)

  • 1. Compressibility of arterial wall in ring-cutting experiments.
    Volokh KY
    Mol Cell Biomech; 2006 Mar; 3(1):35-42. PubMed ID: 16711070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compressibility and constitutive equation of arterial wall in radial compression experiments.
    Chuong CJ; Fung YC
    J Biomech; 1984; 17(1):35-40. PubMed ID: 6715386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [An alternative method of strain analysis on arterial walls].
    Li X; Zeng Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Jan; 19(1):166-71. PubMed ID: 11951509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of longitudinal pre-stretch and radial constraint on the stress distribution in the vessel wall: a new hypothesis.
    Zhang W; Herrera C; Atluri SN; Kassab GS
    Mech Chem Biosyst; 2005; 2(1):41-52. PubMed ID: 16708471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex distributions of residual stress and strain in the mouse left ventricle: experimental and theoretical models.
    Omens JH; McCulloch AD; Criscione JC
    Biomech Model Mechanobiol; 2003 Apr; 1(4):267-77. PubMed ID: 14586695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arterial remodeling in response to increased blood flow using a constituent-based model.
    Tsamis A; Stergiopulos N
    J Biomech; 2009 Mar; 42(4):531-6. PubMed ID: 19185302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth, anisotropy, and residual stresses in arteries.
    Volokh KY; Lev Y
    Mech Chem Biosyst; 2005; 2(1):27-40. PubMed ID: 16708470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of arterial failure based on a microstructural bi-layer fiber-matrix model with softening.
    Volokh KY
    J Biomech; 2008; 41(2):447-53. PubMed ID: 17880984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Residual stresses in oscillating thoracic arteries reduce circumferential stresses and stress gradients.
    Chaudhry HR; Bukiet B; Davis A; Ritter AB; Findley T
    J Biomech; 1997 Jan; 30(1):57-62. PubMed ID: 8970925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Residual stress and strain in the lamellar unit of the porcine aorta: experiment and analysis.
    Matsumoto T; Goto T; Furukawa T; Sato M
    J Biomech; 2004 Jun; 37(6):807-15. PubMed ID: 15111068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opening angle and residual strain in a three-layered model of pig oesophagus.
    Zhao J; Chen X; Yang J; Liao D; Gregersen H
    J Biomech; 2007; 40(14):3187-92. PubMed ID: 17517416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incompressibility of the human arterial wall: an in vitro ultrasound study.
    Girerd XJ; Acar C; Mourad JJ; Boutouyrie P; Safar ME; Laurent S
    J Hypertens Suppl; 1992 Aug; 10(6):S111-4. PubMed ID: 1432310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational stress-deformation analysis of arterial walls including high-pressure response.
    Holzapfel GA; Gasser TC
    Int J Cardiol; 2007 Mar; 116(1):78-85. PubMed ID: 16822562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical behavior of human aortas: Experiments, material constants and 3-D finite element modeling including residual stress.
    Labrosse MR; Beller CJ; Mesana T; Veinot JP
    J Biomech; 2009 May; 42(8):996-1004. PubMed ID: 19345356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mass transport of the arterial wall: effect of mechanical stresses and vasoactive agents, including nitrates.
    Caro CG; Lever MJ
    Z Kardiol; 1983; 72 Suppl 3():178-81. PubMed ID: 6666219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fung's model of arterial wall enhanced with a failure description.
    Volokh KY
    Mol Cell Biomech; 2008 Sep; 5(3):207-16. PubMed ID: 18751529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stresses in growing soft tissues.
    Volokh KY
    Acta Biomater; 2006 Sep; 2(5):493-504. PubMed ID: 16793355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On Eulerian constitutive equations for modeling growth and residual stresses in arteries.
    Volokh KY
    Mech Chem Biosyst; 2005 Jun; 2(2):77-86. PubMed ID: 16783929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of stent design parameters on normal artery wall mechanics.
    Bedoya J; Meyer CA; Timmins LH; Moreno MR; Moore JE
    J Biomech Eng; 2006 Oct; 128(5):757-65. PubMed ID: 16995763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling the mechanical response of elastin for arterial tissue.
    Watton PN; Ventikos Y; Holzapfel GA
    J Biomech; 2009 Jun; 42(9):1320-5. PubMed ID: 19394942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.