These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 16711738)

  • 1. Structural unit analysis identifies lead series and facilitates scaffold hopping in combinatorial chemistry.
    Wolohan PR; Akella LB; Dorfman RJ; Nell PG; Mundt SM; Clark RD
    J Chem Inf Model; 2006; 46(3):1188-93. PubMed ID: 16711738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Similarity searching and scaffold hopping in synthetically accessible combinatorial chemistry spaces.
    Boehm M; Wu TY; Claussen H; Lemmen C
    J Med Chem; 2008 Apr; 51(8):2468-80. PubMed ID: 18380426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning from the data: mining of large high-throughput screening databases.
    Yan SF; King FJ; He Y; Caldwell JS; Zhou Y
    J Chem Inf Model; 2006; 46(6):2381-95. PubMed ID: 17125181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural interpretation of activity cliffs revealed by systematic analysis of structure-activity relationships in analog series.
    Sisay MT; Peltason L; Bajorath J
    J Chem Inf Model; 2009 Oct; 49(10):2179-89. PubMed ID: 19761254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational chemistry-driven decision making in lead generation.
    Schnecke V; Boström J
    Drug Discov Today; 2006 Jan; 11(1-2):43-50. PubMed ID: 16478690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The synergy between combinatorial chemistry and high-throughput screening.
    Diller DJ
    Curr Opin Drug Discov Devel; 2008 May; 11(3):346-55. PubMed ID: 18428088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fragment formal concept analysis accurately classifies compounds with closely related biological activities.
    Krüger F; Lounkine E; Bajorath J
    ChemMedChem; 2009 Jul; 4(7):1174-81. PubMed ID: 19384901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A scalable approach to combinatorial library design for drug discovery.
    Sharma P; Salapaka S; Beck C
    J Chem Inf Model; 2008 Jan; 48(1):27-41. PubMed ID: 18052333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finding multiactivity substructures by mining databases of drug-like compounds.
    Sheridan RP
    J Chem Inf Comput Sci; 2003; 43(3):1037-50. PubMed ID: 12767163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational analysis of multi-target structure-activity relationships to derive preference orders for chemical modifications toward target selectivity.
    Wassermann AM; Peltason L; Bajorath J
    ChemMedChem; 2010 Jun; 5(6):847-58. PubMed ID: 20414918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fast exchange algorithm for designing focused libraries in lead optimization.
    Le Bailly de Tilleghem C; Beck B; Boulanger B; Govaerts B
    J Chem Inf Model; 2005; 45(3):758-67. PubMed ID: 15921465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formal concept analysis for the identification of molecular fragment combinations specific for active and highly potent compounds.
    Lounkine E; Auer J; Bajorath J
    J Med Chem; 2008 Sep; 51(17):5342-8. PubMed ID: 18698757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaffold selection and scaffold hopping in lead generation: a medicinal chemistry perspective.
    Zhao H
    Drug Discov Today; 2007 Feb; 12(3-4):149-55. PubMed ID: 17275735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Target family-directed exploration of scaffolds with different SAR profiles.
    Hu Y; Bajorath J
    J Chem Inf Model; 2011 Dec; 51(12):3138-48. PubMed ID: 22091691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolving interpretable structure-activity relationships. 1. Reduced graph queries.
    Birchall K; Gillet VJ; Harper G; Pickett SD
    J Chem Inf Model; 2008 Aug; 48(8):1543-57. PubMed ID: 18630899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mining high-throughput screening data of combinatorial libraries: development of a filter to distinguish hits from nonhits.
    Teckentrup A; Briem H; Gasteiger J
    J Chem Inf Comput Sci; 2004; 44(2):626-34. PubMed ID: 15032544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced HTS hit selection via a local hit rate analysis.
    Posner BA; Xi H; Mills JE
    J Chem Inf Model; 2009 Oct; 49(10):2202-10. PubMed ID: 19795815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualization of high-dimensional combinatorial catalysis data.
    Suh C; Sieg SC; Heying MJ; Oliver JH; Maier WF; Rajan K
    J Comb Chem; 2009; 11(3):385-92. PubMed ID: 19298082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the scaffold diversity of screening libraries.
    Krier M; Bret G; Rognan D
    J Chem Inf Model; 2006; 46(2):512-24. PubMed ID: 16562979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity-aware clustering of high throughput screening data and elucidation of orthogonal structure-activity relationships.
    Lounkine E; Nigsch F; Jenkins JL; Glick M
    J Chem Inf Model; 2011 Dec; 51(12):3158-68. PubMed ID: 22098146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.