These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 16711768)
1. Toward prediction of class II mouse major histocompatibility complex peptide binding affinity: in silico bioinformatic evaluation using partial least squares, a robust multivariate statistical technique. Hattotuwagama CK; Toseland CP; Guan P; Taylor DJ; Hemsley SL; Doytchinova IA; Flower DR J Chem Inf Model; 2006; 46(3):1491-502. PubMed ID: 16711768 [TBL] [Abstract][Full Text] [Related]
2. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships. Hattotuwagama CK; Doytchinova IA; Flower DR Methods Mol Biol; 2007; 409():227-45. PubMed ID: 18450004 [TBL] [Abstract][Full Text] [Related]
3. In silico prediction of peptide binding affinity to class I mouse major histocompatibility complexes: a comparative molecular similarity index analysis (CoMSIA) study. Hattotuwagama CK; Doytchinova IA; Flower DR J Chem Inf Model; 2005; 45(5):1415-23. PubMed ID: 16180918 [TBL] [Abstract][Full Text] [Related]
4. New horizons in mouse immunoinformatics: reliable in silico prediction of mouse class I histocompatibility major complex peptide binding affinity. Hattotuwagama CK; Guan P; Doytchinova IA; Flower DR Org Biomol Chem; 2004 Nov; 2(22):3274-83. PubMed ID: 15534705 [TBL] [Abstract][Full Text] [Related]
5. Quantitative online prediction of peptide binding to the major histocompatibility complex. Hattotuwagama CK; Guan P; Doytchinova IA; Zygouri C; Flower DR J Mol Graph Model; 2004 Jan; 22(3):195-207. PubMed ID: 14629978 [TBL] [Abstract][Full Text] [Related]
6. Towards the in silico identification of class II restricted T-cell epitopes: a partial least squares iterative self-consistent algorithm for affinity prediction. Doytchinova IA; Flower DR Bioinformatics; 2003 Nov; 19(17):2263-70. PubMed ID: 14630655 [TBL] [Abstract][Full Text] [Related]
7. Peptide length-based prediction of peptide-MHC class II binding. Chang ST; Ghosh D; Kirschner DE; Linderman JJ Bioinformatics; 2006 Nov; 22(22):2761-7. PubMed ID: 17000752 [TBL] [Abstract][Full Text] [Related]
8. POPI: predicting immunogenicity of MHC class I binding peptides by mining informative physicochemical properties. Tung CW; Ho SY Bioinformatics; 2007 Apr; 23(8):942-9. PubMed ID: 17384427 [TBL] [Abstract][Full Text] [Related]
9. Predicting class I major histocompatibility complex (MHC) binders using multivariate statistics: comparison of discriminant analysis and multiple linear regression. Doytchinova IA; Flower DR J Chem Inf Model; 2007; 47(1):234-8. PubMed ID: 17238269 [TBL] [Abstract][Full Text] [Related]
10. BiodMHC: an online server for the prediction of MHC class II-peptide binding affinity. Wang L; Pan D; Hu X; Xiao J; Gao Y; Zhang H; Zhang Y; Liu J; Zhu S J Genet Genomics; 2009 May; 36(5):289-96. PubMed ID: 19447377 [TBL] [Abstract][Full Text] [Related]
11. A Bayesian regression approach to the prediction of MHC-II binding affinity. Zhang W; Liu J; Niu YQ; Wang L; Hu X Comput Methods Programs Biomed; 2008 Oct; 92(1):1-7. PubMed ID: 18562039 [TBL] [Abstract][Full Text] [Related]
12. Quantitative structure-activity relationship of peptides binding to the class II major histocompatibility complex molecule Aq associated with autoimmune arthritis. Holm L; Frech K; Dzhambazov B; Holmdahl R; Kihlberg J; Linusson A J Med Chem; 2007 May; 50(9):2049-59. PubMed ID: 17425295 [TBL] [Abstract][Full Text] [Related]
13. MHCPred: bringing a quantitative dimension to the online prediction of MHC binding. Guan P; Doytchinova IA; Zygouri C; Flower DR Appl Bioinformatics; 2003; 2(1):63-6. PubMed ID: 15130834 [TBL] [Abstract][Full Text] [Related]
14. Bound peptide-dependent thermal stability of major histocompatibility complex class II molecule I-Ek. Saito K; Oda M; Sarai A; Azuma T; Kozono H Biochemistry; 2004 Aug; 43(31):10186-91. PubMed ID: 15287746 [TBL] [Abstract][Full Text] [Related]
15. In silico prediction of peptide-MHC binding affinity using SVRMHC. Liu W; Wan J; Meng X; Flower DR; Li T Methods Mol Biol; 2007; 409():283-91. PubMed ID: 18450008 [TBL] [Abstract][Full Text] [Related]
16. Structure-based identification of MHC binding peptides: Benchmarking of prediction accuracy. Kumar N; Mohanty D Mol Biosyst; 2010 Dec; 6(12):2508-20. PubMed ID: 20953500 [TBL] [Abstract][Full Text] [Related]
17. Predicting the affinity of epitope-peptides with class I MHC molecule HLA-A*0201: an application of amino acid-based peptide prediction. Du QS; Wei YT; Pang ZW; Chou KC; Huang RB Protein Eng Des Sel; 2007 Sep; 20(9):417-23. PubMed ID: 17681974 [TBL] [Abstract][Full Text] [Related]
18. Class II HLA-peptide binding prediction using structural principles. Mohanapriya A; Lulu S; Kayathri R; Kangueane P Hum Immunol; 2009 Mar; 70(3):159-69. PubMed ID: 19187794 [TBL] [Abstract][Full Text] [Related]
19. A set of new amino acid descriptors applied in prediction of MHC class I binding peptides. Liang G; Yang L; Chen Z; Mei H; Shu M; Li Z Eur J Med Chem; 2009 Mar; 44(3):1144-54. PubMed ID: 18662841 [TBL] [Abstract][Full Text] [Related]
20. Predicting peptides bound to I-Ag7 class II histocompatibility molecules using a novel expectation-maximization alignment algorithm. Chang KY; Suri A; Unanue ER Proteomics; 2007 Feb; 7(3):367-77. PubMed ID: 17211830 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]