These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 16711769)

  • 1. A statistical method for predicting protein unfolding rates from amino acid sequence.
    Gromiha MM; Selvaraj S; Thangakani AM
    J Chem Inf Model; 2006; 46(3):1503-8. PubMed ID: 16711769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A statistical model for predicting protein folding rates from amino acid sequence with structural class information.
    Gromiha MM
    J Chem Inf Model; 2005; 45(2):494-501. PubMed ID: 15807515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Importance of native-state topology for determining the folding rate of two-state proteins.
    Gromiha MM
    J Chem Inf Comput Sci; 2003; 43(5):1481-5. PubMed ID: 14502481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of long-range order to predict unfolding rates of two-state proteins.
    Harihar B; Selvaraj S
    Proteins; 2011 Mar; 79(3):880-7. PubMed ID: 21287619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis and prediction of protein folding rates using quadratic response surface models.
    Huang LT; Gromiha MM
    J Comput Chem; 2008 Jul; 29(10):1675-83. PubMed ID: 18351617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FOLD-RATE: prediction of protein folding rates from amino acid sequence.
    Gromiha MM; Thangakani AM; Selvaraj S
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W70-4. PubMed ID: 16845101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of protein folding rates from primary sequences using hybrid sequence representation.
    Jiang Y; Iglinski P; Kurgan L
    J Comput Chem; 2009 Apr; 30(5):772-83. PubMed ID: 18752216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated prediction of protein folding and unfolding rates from only size and structural class.
    De Sancho D; Muñoz V
    Phys Chem Chem Phys; 2011 Oct; 13(38):17030-43. PubMed ID: 21670826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amino acid sequence predicts folding rate for middle-size two-state proteins.
    Huang JT; Tian J
    Proteins; 2006 May; 63(3):551-4. PubMed ID: 16477599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using grey dynamic modeling and pseudo amino acid composition to predict protein structural classes.
    Xiao X; Lin WZ; Chou KC
    J Comput Chem; 2008 Sep; 29(12):2018-24. PubMed ID: 18381630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting protein structural class based on multi-features fusion.
    Chen C; Chen LX; Zou XY; Cai PX
    J Theor Biol; 2008 Jul; 253(2):388-92. PubMed ID: 18423494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison between long-range interactions and contact order in determining the folding rate of two-state proteins: application of long-range order to folding rate prediction.
    Gromiha MM; Selvaraj S
    J Mol Biol; 2001 Jun; 310(1):27-32. PubMed ID: 11419934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of local structural stabilities of proteins from their amino acid sequences.
    Tartaglia GG; Cavalli A; Vendruscolo M
    Structure; 2007 Feb; 15(2):139-43. PubMed ID: 17292832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Refinement of the long-range order parameter in predicting folding rates of two-state proteins.
    Harihar B; Selvaraj S
    Biopolymers; 2009 Nov; 91(11):928-35. PubMed ID: 19603493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using pseudo-amino acid composition and support vector machine to predict protein structural class.
    Chen C; Tian YX; Zou XY; Cai PX; Mo JY
    J Theor Biol; 2006 Dec; 243(3):444-8. PubMed ID: 16908032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rates of unfolding, rather than refolding, determine thermal stabilities of thermophilic, mesophilic, and psychrotrophic 3-isopropylmalate dehydrogenases.
    Gráczer E; Varga A; Hajdú I; Melnik B; Szilágyi A; Semisotnov G; Závodszky P; Vas M
    Biochemistry; 2007 Oct; 46(41):11536-49. PubMed ID: 17887729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural selection for kinetic stability is a likely origin of correlations between mutational effects on protein energetics and frequencies of amino acid occurrences in sequence alignments.
    Godoy-Ruiz R; Ariza F; Rodriguez-Larrea D; Perez-Jimenez R; Ibarra-Molero B; Sanchez-Ruiz JM
    J Mol Biol; 2006 Oct; 362(5):966-78. PubMed ID: 16935299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of protein mutant stability using classification and regression tool.
    Huang LT; Saraboji K; Ho SY; Hwang SF; Ponnuswamy MN; Gromiha MM
    Biophys Chem; 2007 Feb; 125(2-3):462-70. PubMed ID: 17113702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Support Vector Machine-based classification of protein folds using the structural properties of amino acid residues and amino acid residue pairs.
    Shamim MT; Anwaruddin M; Nagarajaram HA
    Bioinformatics; 2007 Dec; 23(24):3320-7. PubMed ID: 17989092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.