These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 16711788)

  • 1. Shock wave propagation in vibrofluidized granular materials.
    Huang K; Miao G; Zhang P; Yun Y; Wei R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041302. PubMed ID: 16711788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shocks in vertically oscillated granular layers.
    Bougie J; Moon SJ; Swift JB; Swinney HL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 1):051301. PubMed ID: 12513479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMR experiments on a three-dimensional vibrofluidized granular medium.
    Huan C; Yang X; Candela D; Mair RW; Walsworth RL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 1):041302. PubMed ID: 15169012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic behaviors of supersonic granular media under vertical vibration.
    Huang K; Zhang P; Miao G; Wei R
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1487-9. PubMed ID: 16824571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Traveling shock front in quasi-two-dimensional granular flows.
    Hu G; Li Y; Hou M; To K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011305. PubMed ID: 20365366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The origin of granular convection in vertically vibrated particle beds: The differential shear flow field.
    Xue K; Zheng Y; Fan B; Li F; Bai C
    Eur Phys J E Soft Matter; 2013 Jan; 36(1):8. PubMed ID: 23355093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissipative properties and scaling law for a layer of granular material on a vibrating plate.
    Miao G; Sui L; Wei R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 1):031304. PubMed ID: 11308646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Density-wave fronts on the brink of wet granular condensation.
    Zippelius A; Huang K
    Sci Rep; 2017 Jun; 7(1):3613. PubMed ID: 28620191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dilatancy, buckling, and undulations on a vertically vibrating granular layer.
    Sano O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051302. PubMed ID: 16383598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stratified horizontal flow in vertically vibrated granular layers.
    Levanon M; Rapaport DC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 1):011304. PubMed ID: 11461246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal convection and temperature inhomogeneity in a vibrofluidized granular bed: the influence of sidewall dissipation.
    Windows-Yule CR; Rivas N; Parker DJ
    Phys Rev Lett; 2013 Jul; 111(3):038001. PubMed ID: 23909362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Universality in quasi-two-dimensional granular shock fronts above an intruder.
    Karim MY; Corwin EI
    Phys Rev E; 2017 Jun; 95(6-1):060901. PubMed ID: 28709209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interior dynamics of subharmonious surface wave in an idealized bidimensional granular layer.
    Zhang P; Huang K; Miao G; Wei R
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1479-81. PubMed ID: 16806350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competition between geometrically induced and density-driven segregation mechanisms in vibrofluidized granular systems.
    Windows-Yule CR; Douglas GJ; Parker DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032205. PubMed ID: 25871101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Horizontal flow and surface patterns in a vertically vibrated annular granular layer.
    Cai H; Chen W; Miao G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032204. PubMed ID: 25871100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wave propagation in a dynamic system of soft granular materials.
    Harada S; Takagi S; Matsumoto Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 1):061305. PubMed ID: 16241219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shock front width and structure in supersonic granular flows.
    Boudet JF; Amarouchene Y; Kellay H
    Phys Rev Lett; 2008 Dec; 101(25):254503. PubMed ID: 19113715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualization of collisional substructure in granular shock waves.
    Perez JA; Kachuck SB; Voth GA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041309. PubMed ID: 18999420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropic energy distribution in three-dimensional vibrofluidized granular systems.
    Krouskop PE; Talbot J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061308. PubMed ID: 15244561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Survey of shock-wave structures of smooth-particle granular flows.
    Padgett DA; Mazzoleni AP; Faw SD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062209. PubMed ID: 26764684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.