These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 16711913)

  • 1. Method for measuring unstable dimension variability from time series.
    McCullen NJ; Moresco P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):046203. PubMed ID: 16711913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Periodic orbit analysis at the onset of the unstable dimension variability and at the blowout bifurcation.
    Pereira RF; de S Pinto SE; Viana RL; Lopes SR; Grebogi C
    Chaos; 2007 Jun; 17(2):023131. PubMed ID: 17614685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms for the development of unstable dimension variability and the breakdown of shadowing in coupled chaotic systems.
    Barreto E; So P
    Phys Rev Lett; 2000 Sep; 85(12):2490-3. PubMed ID: 10978089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistics of shadowing time in nonhyperbolic chaotic systems with unstable dimension variability.
    Do Y; Lai YC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016213. PubMed ID: 14995699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noise-induced unstable dimension variability and transition to chaos in random dynamical systems.
    Lai YC; Liu Z; Billings L; Schwartz IB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026210. PubMed ID: 12636779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unstable dimension variability in coupled chaotic systems.
    Lai YC; Lerner D; Williams K; Grebogi C
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt A):5445-54. PubMed ID: 11970417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical characteristics, circulation regimes and unstable periodic orbits of a barotropic atmospheric model.
    Gritsun A
    Philos Trans A Math Phys Eng Sci; 2013 May; 371(1991):20120336. PubMed ID: 23588051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Route to hyperchaos in a system of coupled oscillators with multistability.
    McCullen NJ; Moresco P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046212. PubMed ID: 21599275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-state on-off intermittency caused by unstable dimension variability in periodically forced drift waves.
    Galuzio PP; Lopes SR; Viana RL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056211. PubMed ID: 22181488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of an associative memory using unstable periodic orbits of a chaotic attractor.
    Wagner C; Stucki JW
    J Theor Biol; 2002 Apr; 215(3):375-84. PubMed ID: 12054844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Covariant Lyapunov analysis of chaotic Kolmogorov flows.
    Inubushi M; Kobayashi MU; Takehiro S; Yamada M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016331. PubMed ID: 22400681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unexpected robustness against noise of a class of nonhyperbolic chaotic attractors.
    Kantz H; Grebogi C; Prasad A; Lai YC; Sinde E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026209. PubMed ID: 11863634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Universal and nonuniversal features in shadowing dynamics of nonhyperbolic chaotic systems with unstable-dimension variability.
    Do Y; Lai YC; Liu Z; Kostelich EJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):035202. PubMed ID: 12689122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal periodic orbits of continuous time chaotic systems.
    Yang TH; Hunt BR; Ott E
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt A):1950-9. PubMed ID: 11088659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperbolic chaotic attractor in amplitude dynamics of coupled self-oscillators with periodic parameter modulation.
    Isaeva OB; Kuznetsov SP; Mosekilde E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016228. PubMed ID: 21867294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].
    Pezard L; Nandrino JL
    Encephale; 2001; 27(3):260-8. PubMed ID: 11488256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detecting and controlling unstable periodic orbits that are not part of a chaotic attractor.
    Perc M; Marhl M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):016204. PubMed ID: 15324149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-dimensional paradigms for high-dimensional hetero-chaos.
    Saiki Y; Sanjuán MAF; Yorke JA
    Chaos; 2018 Oct; 28(10):103110. PubMed ID: 30384627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chaotic bursting at the onset of unstable dimension variability.
    Viana RL; Pinto SE; Grebogi C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046213. PubMed ID: 12443305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Counting unstable periodic orbits in noisy chaotic systems: A scaling relation connecting experiment with theory.
    Pei X; Dolan K; Moss F; Lai YC
    Chaos; 1998 Dec; 8(4):853-860. PubMed ID: 12779792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.