These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 16711916)
41. Coarse-grained molecular dynamics study of block copolymer/nanoparticle composites under elongational flow. Kalra V; Joo YL J Chem Phys; 2009 Dec; 131(21):214904. PubMed ID: 19968366 [TBL] [Abstract][Full Text] [Related]
42. Phase space trajectories and Lyapunov exponents in the dynamics of an alpha-helical protein lattice with intra- and inter-spine interactions. Angelin Jeba K; Latha MM; Jain SR Chaos; 2015 Nov; 25(11):113109. PubMed ID: 26627569 [TBL] [Abstract][Full Text] [Related]
43. Analyses of transient chaotic time series. Dhamala M; Lai YC; Kostelich EJ Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056207. PubMed ID: 11736054 [TBL] [Abstract][Full Text] [Related]
44. Role of inertial forces on the chaotic dynamics of flexible rotating bodies. Calvo F Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022901. PubMed ID: 23496585 [TBL] [Abstract][Full Text] [Related]
46. Geometrical constraints on finite-time Lyapunov exponents in two and three dimensions. Thiffeault JL; Boozer AH Chaos; 2001 Mar; 11(1):16-28. PubMed ID: 12779437 [TBL] [Abstract][Full Text] [Related]
47. Enhancing chaoticity of spatiotemporal chaos. Li X; Zhang H; Xue Y; Hu G Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016216. PubMed ID: 15697707 [TBL] [Abstract][Full Text] [Related]
48. Dynamics of impurities in a three-dimensional volume-preserving map. Das S; Gupte N Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012906. PubMed ID: 25122359 [TBL] [Abstract][Full Text] [Related]
49. Comparison between covariant and orthogonal Lyapunov vectors. Yang HL; Radons G Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046204. PubMed ID: 21230362 [TBL] [Abstract][Full Text] [Related]
50. Lagrangian topology of a periodically reoriented potential flow: symmetry, optimization, and mixing. Lester DR; Metcalfe G; Trefry MG; Ord A; Hobbs B; Rudman M Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036208. PubMed ID: 19905201 [TBL] [Abstract][Full Text] [Related]
51. Lyapunov exponents for small aspect ratio Rayleigh-Bénard convection. Scheel JD; Cross MC Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066301. PubMed ID: 17280142 [TBL] [Abstract][Full Text] [Related]
52. Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data. Pathak J; Lu Z; Hunt BR; Girvan M; Ott E Chaos; 2017 Dec; 27(12):121102. PubMed ID: 29289043 [TBL] [Abstract][Full Text] [Related]
53. Breaking of integrability and conservation leading to Hamiltonian chaotic system and its energy-based coexistence analysis. Qi G; Gou T; Hu J; Chen G Chaos; 2021 Jan; 31(1):013101. PubMed ID: 33754774 [TBL] [Abstract][Full Text] [Related]
54. Hydrodynamic Lyapunov modes and strong stochasticity threshold in Fermi-Pasta-Ulam models. Yang HL; Radons G Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066201. PubMed ID: 16906940 [TBL] [Abstract][Full Text] [Related]
55. Finite-size effects on active chaotic advection. Nishikawa T; Toroczkai Z; Grebogi C; Tél T Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026216. PubMed ID: 11863641 [TBL] [Abstract][Full Text] [Related]
56. Lyapunov exponents from unstable periodic orbits. Franzosi R; Poggi P; Cerruti-Sola M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036218. PubMed ID: 15903557 [TBL] [Abstract][Full Text] [Related]
57. Phase behavior of a simple dipolar fluid under shear flow in an electric field. McWhirter JL J Chem Phys; 2008 Jan; 128(3):034502. PubMed ID: 18205505 [TBL] [Abstract][Full Text] [Related]