These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

551 related articles for article (PubMed ID: 16711945)

  • 1. Photonic band-gap formation by optical-phase-mask lithography.
    Chan TY; Toader O; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):046610. PubMed ID: 16711945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photonic band gap templating using optical interference lithography.
    Chan TY; Toader O; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046605. PubMed ID: 15903804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Five beam holographic lithography for simultaneous fabrication of three dimensional photonic crystal templates and line defects using phase tunable diffractive optical element.
    Lin Y; Harb A; Lozano K; Xu D; Chen KP
    Opt Express; 2009 Sep; 17(19):16625-31. PubMed ID: 19770878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photonic band gap architectures for holographic lithography.
    Toader O; Chan TY; John S
    Phys Rev Lett; 2004 Jan; 92(4):043905. PubMed ID: 14995377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoimprinting lithography of a two-layer phase mask for three-dimensional photonic structure holographic fabrications via single exposure.
    Xu D; Chen KP; Ohlinger K; Lin Y
    Nanotechnology; 2011 Jan; 22(3):035303. PubMed ID: 21149952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Square spiral photonic crystals: robust architecture for microfabrication of materials with large three-dimensional photonic band gaps.
    Toader O; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016610. PubMed ID: 12241503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Layered nano-gratings by electron beam writing to form 3-level diffractive optical elements for 3D phase-offset holographic lithography.
    Yuan LL; Herman PR
    Nanoscale; 2015 Dec; 7(47):19905-13. PubMed ID: 26568395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of two-layer integrated phase mask for single-beam and single-exposure fabrication of three-dimensional photonic crystal.
    Lin Y; Harb A; Rodriguez D; Lozano K; Xu D; Chen KP
    Opt Express; 2008 Jun; 16(12):9165-72. PubMed ID: 18545628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photonic band gaps based on tetragonal lattices of slanted pores.
    Toader O; Berciu M; John S
    Phys Rev Lett; 2003 Jun; 90(23):233901. PubMed ID: 12857259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pattern-integrated interference lithography: single-exposure fabrication of photonic-crystal structures.
    Burrow GM; Leibovici MC; Gaylord TK
    Appl Opt; 2012 Jun; 51(18):4028-41. PubMed ID: 22722277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slanted-pore photonic band-gap materials.
    Toader O; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036605. PubMed ID: 15903603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Woodpile-type photonic crystals with orthorhombic or tetragonal symmetry formed through phase mask techniques.
    Lin Y; Rivera D; Chen KP
    Opt Express; 2006 Jan; 14(2):887-92. PubMed ID: 19503408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Five-beam interference pattern controlled through phases and wave vectors for diamondlike photonic crystals.
    Lin Y; Rivera D; Poole Z; Chen KP
    Appl Opt; 2006 Nov; 45(31):7971-6. PubMed ID: 17068535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffractionless flow of light in two- and three-dimensional photonic band gap heterostructures: Theory, design rules, and simulations.
    Chutinan A; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026605. PubMed ID: 15783439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Holographic design of a two-dimensional photonic crystal of square lattice with pincushion columns and large complete band gaps.
    Cai L; Feng CS; He MZ; Yang XL; Meng X; Dong GY; Yu X
    Opt Express; 2005 May; 13(11):4325-30. PubMed ID: 19495347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible fabrication of three-dimensional optical-domain photonic crystals using a combination of single-laser-exposure diffractive-optics lithography and template inversion.
    Chanda D; Zachari N; Haque M; Ng ML; Herman PR
    Opt Lett; 2009 Dec; 34(24):3920-2. PubMed ID: 20016658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blueprint for wafer-scale three-dimensional photonic band-gap synthesis by photoelectrochemical etching.
    Chan TY; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):046607. PubMed ID: 14683065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proposed square spiral microfabrication architecture for large three-dimensional photonic band gap crystals.
    Toader O; John S
    Science; 2001 May; 292(5519):1133-5. PubMed ID: 11349142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-level diffractive optics for single laser exposure fabrication of telecom-band diamond-like 3-dimensional photonic crystals.
    Chanda D; Abolghasemi LE; Haque M; Ng ML; Herman PR
    Opt Express; 2008 Sep; 16(20):15402-14. PubMed ID: 18825176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable photonic crystals with partial bandgaps from blue phase colloidal crystals and dielectric-doped blue phases.
    Stimulak M; Ravnik M
    Soft Matter; 2014 Sep; 10(33):6339-46. PubMed ID: 25034860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.