These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 16711993)

  • 1. Centrifugal forces alter streamline topology and greatly enhance the rate of heat and mass transfer from neutrally buoyant particles to a shear flow.
    Subramanian G; Koch DL
    Phys Rev Lett; 2006 Apr; 96(13):134503. PubMed ID: 16711993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laminar, turbulent, and inertial shear-thickening regimes in channel flow of neutrally buoyant particle suspensions.
    Lashgari I; Picano F; Breugem WP; Brandt L
    Phys Rev Lett; 2014 Dec; 113(25):254502. PubMed ID: 25554885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of fluid and particle inertia on the rotation of an oblate spheroidal particle suspended in linear shear flow.
    Rosén T; Do-Quang M; Aidun CK; Lundell F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053017. PubMed ID: 26066258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical analysis of the angular motion of a neutrally buoyant spheroid in shear flow at small Reynolds numbers.
    Rosén T; Einarsson J; Nordmark A; Aidun CK; Lundell F; Mehlig B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063022. PubMed ID: 26764819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brownian motion of finite-inertia particles in a simple shear flow.
    Drossinos Y; Reeks MW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 1):031113. PubMed ID: 15903412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of a self-diffusiophoretic particle in shear flow.
    Frankel AE; Khair AS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013030. PubMed ID: 25122392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From diffusive mass transfer in Stokes flow to low Reynolds number Marangoni boats.
    Ender H; Kierfeld J
    Eur Phys J E Soft Matter; 2021 Feb; 44(1):4. PubMed ID: 33580288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermoregulation and the determinants of heat transfer in Colias butterflies.
    Kingsolver JG; Moffat RJ
    Oecologia; 1982 Apr; 53(1):27-33. PubMed ID: 28310599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Point-source dispersion of quasi-neutrally-buoyant inertial particles.
    Martins Afonso M; Gama SMA
    Eur Phys J E Soft Matter; 2019 Jan; 42(1):10. PubMed ID: 30684095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle focusing mechanisms in curving confined flows.
    Gossett DR; Di Carlo D
    Anal Chem; 2009 Oct; 81(20):8459-65. PubMed ID: 19761190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence of convective heat transfer enhancement induced by spinodal decomposition.
    Poesio P; Lezzi AM; Beretta GP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):066306. PubMed ID: 17677356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inertial Migration of Neutrally Buoyant Spherical Particles in Square Channels at Moderate and High Reynolds Numbers.
    Gao Y; Magaud P; Baldas L; Wang Y
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33672972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unified torque scaling in counter-rotating suspension Taylor-Couette flow.
    Alam M; Ghosh M
    Philos Trans A Math Phys Eng Sci; 2023 Mar; 381(2243):20220226. PubMed ID: 36709774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orientational order in dense suspensions of elliptical particles in the non-Stokesian regime.
    Tegze G; Podmaniczky F; Somfai E; Börzsönyi T; Gránásy L
    Soft Matter; 2020 Oct; 16(38):8925-8932. PubMed ID: 32895674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical Stokes number for the capture of inertial particles by recirculation cells in two-dimensional quasisteady flows.
    Verjus R; Angilella JR
    Phys Rev E; 2016 May; 93(5):053116. PubMed ID: 27300987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodynamic interactions and Brownian forces in colloidal suspensions: coarse-graining over time and length scales.
    Padding JT; Louis AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):031402. PubMed ID: 17025630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast mass transport-assisted convective heat transfer through a multi-walled carbon nanotube array.
    Jeon W; Kim T; Kim SM; Baik S
    Nanoscale; 2018 Dec; 10(48):23103-23112. PubMed ID: 30511712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chaotic rotation of a spheroidal particle in simple shear flow.
    Rosén T
    Chaos; 2017 Jun; 27(6):063112. PubMed ID: 28679228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of shape on the margination dynamics of non-neutrally buoyant particles in two-dimensional shear flows.
    Gentile F; Chiappini C; Fine D; Bhavane RC; Peluccio MS; Cheng MM; Liu X; Ferrari M; Decuzzi P
    J Biomech; 2008 Jul; 41(10):2312-8. PubMed ID: 18571181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel thin-film temperature and heat-flux microsensor for heat transfer measurements in microchannels.
    Hamadi D; Garnier B; Willaime H; Monti F; Peerhossaini H
    Lab Chip; 2012 Feb; 12(3):652-8. PubMed ID: 22179553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.