These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 16712012)

  • 1. Validity of the Franck-Condon principle in the optical spectroscopy: optical conductivity of the Fröhlich polaron.
    De Filippis G; Cataudella V; Mishchenko AS; Perroni CA; Devreese JT
    Phys Rev Lett; 2006 Apr; 96(13):136405. PubMed ID: 16712012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical conductivity of the Fröhlich polaron.
    Mishchenko AS; Nagaosa N; Prokof'ev NV; Sakamoto A; Svistunov BV
    Phys Rev Lett; 2003 Dec; 91(23):236401. PubMed ID: 14683203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron-phonon coupling and a polaron in the t-J model: from the weak to the strong coupling regime.
    Mishchenko AS; Nagaosa N
    Phys Rev Lett; 2004 Jul; 93(3):036402. PubMed ID: 15323844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renormalization group approach to the Fröhlich polaron model: application to impurity-BEC problem.
    Grusdt F; Shchadilova YE; Rubtsov AN; Demler E
    Sci Rep; 2015 Jul; 5():12124. PubMed ID: 26183614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polaron Mobility in the "Beyond Quasiparticles" Regime.
    Mishchenko AS; Pollet L; Prokof'ev NV; Kumar A; Maslov DL; Nagaosa N
    Phys Rev Lett; 2019 Aug; 123(7):076601. PubMed ID: 31491114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical conductivity of the Holstein polaron.
    Goodvin GL; Mishchenko AS; Berciu M
    Phys Rev Lett; 2011 Aug; 107(7):076403. PubMed ID: 21902409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential-Energy Surfaces, the Born-Oppenheimer Approximations, and the Franck-Condon Principle: Back to the Roots.
    Mustroph H
    Chemphyschem; 2016 Sep; 17(17):2616-29. PubMed ID: 27346879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diagrammatic Monte Carlo method for many-polaron problems.
    Mishchenko AS; Nagaosa N; Prokof'ev N
    Phys Rev Lett; 2014 Oct; 113(16):166402. PubMed ID: 25361271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free energy of the Fröhlich polaron in two and three dimensions.
    Titantah JT; Pierleoni C; Ciuchi S
    Phys Rev Lett; 2001 Nov; 87(20):206406. PubMed ID: 11690499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unified theory of electron-phonon renormalization and phonon-assisted optical absorption.
    Patrick CE; Giustino F
    J Phys Condens Matter; 2014 Sep; 26(36):365503. PubMed ID: 25134725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amide-I lifetime-limited vibrational energy flow in a one-dimensional lattice of hydrogen-bonded peptide units.
    Pouthier V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):061909. PubMed ID: 19256870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of a Holstein polaron with off-diagonal coupling.
    Zhao Y; Luo B; Zhang Y; Ye J
    J Chem Phys; 2012 Aug; 137(8):084113. PubMed ID: 22938224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effectiveness of perturbation theory approaches for computing non-condon electron transfer dynamics in condensed phases.
    Cook WR; Coalson RD; Evans DG
    J Phys Chem B; 2009 Aug; 113(33):11437-47. PubMed ID: 19630413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fröhlich mass in GaAs-based structures.
    Faugeras C; Martinez G; Riedel A; Hey R; Friedland KJ; Bychkov Y
    Phys Rev Lett; 2004 Mar; 92(10):107403. PubMed ID: 15089242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hot Carrier Relaxation in CsPbBr
    Kaur G; Ghosh HN
    J Phys Chem Lett; 2020 Oct; 11(20):8765-8776. PubMed ID: 32961059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anharmonic Franck-Condon simulation of the absorption and fluorescence spectra for the low-lying S1 and S2 excited states of pyridine.
    Wang H; Zhu C; Yu JG; Lin SH
    J Phys Chem A; 2009 Dec; 113(52):14407-14. PubMed ID: 19572679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox-Dependent Franck-Condon Blockade and Avalanche Transport in a Graphene-Fullerene Single-Molecule Transistor.
    Lau CS; Sadeghi H; Rogers G; Sangtarash S; Dallas P; Porfyrakis K; Warner J; Lambert CJ; Briggs GA; Mol JA
    Nano Lett; 2016 Jan; 16(1):170-6. PubMed ID: 26633125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Franck-Condon blockade and giant Fano factors in transport through single molecules.
    Koch J; von Oppen F
    Phys Rev Lett; 2005 May; 94(20):206804. PubMed ID: 16090269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamics of the polaron master equation at finite bias.
    Krause T; Brandes T; Esposito M; Schaller G
    J Chem Phys; 2015 Apr; 142(13):134106. PubMed ID: 25854227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Truncated phase-space approach to polaron response.
    Sels D; Brosens F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012124. PubMed ID: 24580189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.